Skip to main content
Erschienen in:
Buchtitelbild

2015 | OriginalPaper | Buchkapitel

1. Polymer Chemistry and Synthetic Polymers

verfasst von : Ortensia Ilaria Parisi, Manuela Curcio, Francesco Puoci

Erschienen in: Advanced Polymers in Medicine

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polymers are macromolecules derived by the combination of one or more chemical units (monomers) that repeat themselves along the molecule. The IUPAC Gold Book defines a polymer as “A molecule of high relative molecular mass, the structure of which essentially comprises the multiple repetition of units derived, actually or conceptually, from molecules of low relative molecular mass.” Several ways of classification can be adopted depending on: their source (natural and synthetic), their structure (linear, branched and crosslinked), the polymerization mechanism (step-growth and chain polymers) and molecular forces (Elastomers, fibres, thermoplastic and thermosetting polymers). In this chapter, the molecular mechanisms and kinetic of polymer formation reactions were explored and particular attention was devoted to the main polymerization techniques. Finally, an overview of the most employed synthetic materials in biomedical field is performed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Odian, G. (ed.): Principles of Polymerization, 4th edn. Wiley, New York (2004) Odian, G. (ed.): Principles of Polymerization, 4th edn. Wiley, New York (2004)
2.
Zurück zum Zitat Billmeyer, F.W. (ed.): Textbook of Polymer Science. Wiley, New York (1984) Billmeyer, F.W. (ed.): Textbook of Polymer Science. Wiley, New York (1984)
3.
Zurück zum Zitat Hasirci, V., Yilgor, P., Endogan, T., Eke, G., Hasirci, N.: Polymer fundamentals: polymer synthesis. In: Ducheyne, P., Healy, K.E., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (eds.) Comprehensive Biomaterials, 1st edn, pp. 350–371. Elsevier Ltd, Oxford (2011) Hasirci, V., Yilgor, P., Endogan, T., Eke, G., Hasirci, N.: Polymer fundamentals: polymer synthesis. In: Ducheyne, P., Healy, K.E., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (eds.) Comprehensive Biomaterials, 1st edn, pp. 350–371. Elsevier Ltd, Oxford (2011)
4.
Zurück zum Zitat Hiemenz, P.C., Lodge, T.P. (eds.): Polymer Chemistry, 2nd edn. CRC Press, Boca Raton (2007) Hiemenz, P.C., Lodge, T.P. (eds.): Polymer Chemistry, 2nd edn. CRC Press, Boca Raton (2007)
5.
Zurück zum Zitat Young, R.J., Lovell, P.A. (eds.): Introduction to Polymers, 2nd edn. Chapman and Hall, London (1995) Young, R.J., Lovell, P.A. (eds.): Introduction to Polymers, 2nd edn. Chapman and Hall, London (1995)
6.
Zurück zum Zitat Walton, D.J., Lorimer, J.P.: Polymers. Oxford University Press, Oxford (2001) Walton, D.J., Lorimer, J.P.: Polymers. Oxford University Press, Oxford (2001)
7.
Zurück zum Zitat Fried, J.R. (ed.): Polymer Science and Technology. Prentice Hall, Englewood Cliffs (1995) Fried, J.R. (ed.): Polymer Science and Technology. Prentice Hall, Englewood Cliffs (1995)
8.
Zurück zum Zitat Fischer, H.: The persistent radical effect in “living” radical polymerization. Macromolecules 30, 5666–5762 (1997)CrossRef Fischer, H.: The persistent radical effect in “living” radical polymerization. Macromolecules 30, 5666–5762 (1997)CrossRef
9.
Zurück zum Zitat Matyjaszewski, K., Xia, J.: Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001)CrossRef Matyjaszewski, K., Xia, J.: Atom transfer radical polymerization. Chem. Rev. 101, 2921–2990 (2001)CrossRef
10.
Zurück zum Zitat Matyjaszewski, K., Davis, T.P. (eds.): Handbook of Radical Polymerization. Wiley, Hoboken (2002) Matyjaszewski, K., Davis, T.P. (eds.): Handbook of Radical Polymerization. Wiley, Hoboken (2002)
11.
Zurück zum Zitat Lubnin, A., O’Malley, K., Hanshumaker, D., Lai, J.: Waterborne RAFT polymers. Eur. Polym. J. 46, 1563–1575 (2010)CrossRef Lubnin, A., O’Malley, K., Hanshumaker, D., Lai, J.: Waterborne RAFT polymers. Eur. Polym. J. 46, 1563–1575 (2010)CrossRef
12.
Zurück zum Zitat Moad, G., Rizzardo, E., Thang, S.H.: Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49, 1079–1131 (2008)CrossRef Moad, G., Rizzardo, E., Thang, S.H.: Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49, 1079–1131 (2008)CrossRef
13.
Zurück zum Zitat Mya, K.Y., Lin, E.M.J., Gudipati, C.S., Gose, H.B.A.S., He, C.: Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties. J. Phys. Chem. B 114, 9128–9134 (2010)CrossRef Mya, K.Y., Lin, E.M.J., Gudipati, C.S., Gose, H.B.A.S., He, C.: Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties. J. Phys. Chem. B 114, 9128–9134 (2010)CrossRef
14.
Zurück zum Zitat Braun, D., Cherdron, H., Rehahn, M., Ritter, H., Voit, B. (eds.): Polymer Synthesis: Theory and Practice, Fundamentals, Methods, Experiments, 4th edn. Springer, New York (2005) Braun, D., Cherdron, H., Rehahn, M., Ritter, H., Voit, B. (eds.): Polymer Synthesis: Theory and Practice, Fundamentals, Methods, Experiments, 4th edn. Springer, New York (2005)
15.
Zurück zum Zitat Moad, G., Solomon, D.H. (eds.): The Chemistry of Radical Polymerization, 2nd edn. Elsevier, Oxford (2006) Moad, G., Solomon, D.H. (eds.): The Chemistry of Radical Polymerization, 2nd edn. Elsevier, Oxford (2006)
16.
Zurück zum Zitat Odian, G. (ed.): Principles of Polymerization, 4th edn. Wiley Interscience, New York (2004) Odian, G. (ed.): Principles of Polymerization, 4th edn. Wiley Interscience, New York (2004)
17.
Zurück zum Zitat Blackley, D.C. (ed.): Emulsion Polymerization. Applied Science, London (1975) Blackley, D.C. (ed.): Emulsion Polymerization. Applied Science, London (1975)
18.
Zurück zum Zitat Poehlein, G.W.: Emulsion polymerization. In: Mark, H.F., Bikales, N.M., Overberger, C.G., Menges, G. (eds.) Encyclopedia of Polymer Science and Engineering, vol. 6, pp. 1–51. Wiley-Interscience, New York (1986) Poehlein, G.W.: Emulsion polymerization. In: Mark, H.F., Bikales, N.M., Overberger, C.G., Menges, G. (eds.) Encyclopedia of Polymer Science and Engineering, vol. 6, pp. 1–51. Wiley-Interscience, New York (1986)
19.
Zurück zum Zitat Antonietti, M., Landfester, K.: Polyreactions in miniemulsions. Prog. Polym. Sci. 27, 689–757 (2002)CrossRef Antonietti, M., Landfester, K.: Polyreactions in miniemulsions. Prog. Polym. Sci. 27, 689–757 (2002)CrossRef
20.
Zurück zum Zitat Asua, J.M.: Miniemulsion polymerization. Prog. Polym. Sci. 27, 1283–1346 (2002)CrossRef Asua, J.M.: Miniemulsion polymerization. Prog. Polym. Sci. 27, 1283–1346 (2002)CrossRef
21.
Zurück zum Zitat Pruitt, L.A.: Structural biomedical polymers (Nondegradable). In: Ducheyne, P., Healy, K.E., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (eds.) Comprehensive Biomaterials, 1st edn, pp. 373–379. Elsevier Ltd, Oxford (2011)CrossRef Pruitt, L.A.: Structural biomedical polymers (Nondegradable). In: Ducheyne, P., Healy, K.E., Hutmacher, D.W., Grainger, D.W., Kirkpatrick, C.J. (eds.) Comprehensive Biomaterials, 1st edn, pp. 373–379. Elsevier Ltd, Oxford (2011)CrossRef
22.
Zurück zum Zitat Pinchuk, L.: A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. J. Biomater. Sci. Polym. Ed. 3, 225–267 (1994) Pinchuk, L.: A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. J. Biomater. Sci. Polym. Ed. 3, 225–267 (1994)
23.
Zurück zum Zitat Gunatillake, P.A., Meijs, G.F., McCarthy, S.J.: Developments in design and synthesis of biostable polyurethanes. In: Vermette, P., Griesser, H.J., Laroche, G., Guidoin, R. (eds.) Biomedical Applications of Polyurethanes, pp. 160–170. Landes Bioscience, Georgetown (2001) Gunatillake, P.A., Meijs, G.F., McCarthy, S.J.: Developments in design and synthesis of biostable polyurethanes. In: Vermette, P., Griesser, H.J., Laroche, G., Guidoin, R. (eds.) Biomedical Applications of Polyurethanes, pp. 160–170. Landes Bioscience, Georgetown (2001)
24.
Zurück zum Zitat Gunatillake, Pathiraja A., Adhikari, R.: Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1–16 (2003) Gunatillake, Pathiraja A., Adhikari, R.: Biodegradable synthetic polymers for tissue engineering. Eur. Cells Mater. 5, 1–16 (2003)
25.
Zurück zum Zitat Vroman, I., Tighzert, L.: Biodegradable Polymers. Materials 2, 307–344 (2009)CrossRef Vroman, I., Tighzert, L.: Biodegradable Polymers. Materials 2, 307–344 (2009)CrossRef
26.
Zurück zum Zitat Shalaby, S.W.: Bioabsorbable polymers. In: Swarbrick, J., Boylan, J.C. (eds.) Encyclopedia of Pharmceutical Technology, pp. 465–476 (1988) Shalaby, S.W.: Bioabsorbable polymers. In: Swarbrick, J., Boylan, J.C. (eds.) Encyclopedia of Pharmceutical Technology, pp. 465–476 (1988)
27.
Zurück zum Zitat Holland, S.J., Tighe, B.J.: Biodegradable polymers. Advances in Pharmaceutical Science, pp. 101–164. Academic Press, London (1992) Holland, S.J., Tighe, B.J.: Biodegradable polymers. Advances in Pharmaceutical Science, pp. 101–164. Academic Press, London (1992)
28.
Zurück zum Zitat Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997) Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997)
29.
Zurück zum Zitat Ashammakhi, N., Rokkanen, P.: Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18, 3–9 (1997)CrossRef Ashammakhi, N., Rokkanen, P.: Absorbable polyglycolide devices in trauma and bone surgery. Biomaterials 18, 3–9 (1997)CrossRef
30.
Zurück zum Zitat Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997) Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997)
31.
Zurück zum Zitat Behravesh, E., Yasko, A.W., Engle, P.S., Mikos, A.G.: Synthetic biodegradable polymers for orthopaedic applications. Clin. Orthop. 367S, 118–185 (1999)CrossRef Behravesh, E., Yasko, A.W., Engle, P.S., Mikos, A.G.: Synthetic biodegradable polymers for orthopaedic applications. Clin. Orthop. 367S, 118–185 (1999)CrossRef
32.
Zurück zum Zitat Middleton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21, 2335–2346 (2000)CrossRef Middleton, J.C., Tipton, A.J.: Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21, 2335–2346 (2000)CrossRef
33.
Zurück zum Zitat Hubbell, J.: Biomaterials in tissue engineering. Biotechnology 13, 565–576 (1995)CrossRef Hubbell, J.: Biomaterials in tissue engineering. Biotechnology 13, 565–576 (1995)CrossRef
34.
Zurück zum Zitat Thomson, R.C., Wake, M.C., Yaszemski, M.J., Mikos, A.G.: Biodegradable polymer scaffolds to regenerate organs. Adv. Polym. Sci. 122, 245–274 (1995)CrossRef Thomson, R.C., Wake, M.C., Yaszemski, M.J., Mikos, A.G.: Biodegradable polymer scaffolds to regenerate organs. Adv. Polym. Sci. 122, 245–274 (1995)CrossRef
35.
Zurück zum Zitat Yazemski, M.J., Yasko, A.W., Engel, P.S., Mikos, A.G.: In vitro degradation of a poly(propylene fumarate)/ßtricalcium phosphate composition orthopaedic scaffold. Tissue Eng. 3, 207–215 (1997)CrossRef Yazemski, M.J., Yasko, A.W., Engel, P.S., Mikos, A.G.: In vitro degradation of a poly(propylene fumarate)/ßtricalcium phosphate composition orthopaedic scaffold. Tissue Eng. 3, 207–215 (1997)CrossRef
36.
Zurück zum Zitat Wong, W.H., Mooney, D.J.: Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering. In: Atala, A., Mooney, D. (eds.) Synthetic Biodegradable Polymer Scaffolds, pp. 51–84. Burkhäuser, Boston (1997)CrossRef Wong, W.H., Mooney, D.J.: Synthesis and properties of biodegradable polymers used as synthetic matrices for tissue engineering. In: Atala, A., Mooney, D. (eds.) Synthetic Biodegradable Polymer Scaffolds, pp. 51–84. Burkhäuser, Boston (1997)CrossRef
37.
Zurück zum Zitat Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997) Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997)
38.
Zurück zum Zitat Burg, K.J.L., Porter, S., Kellam, J.F.: Biomaterials development for bone tissue engineering. Biomaterials 21, 2347–2359 (2000)CrossRef Burg, K.J.L., Porter, S., Kellam, J.F.: Biomaterials development for bone tissue engineering. Biomaterials 21, 2347–2359 (2000)CrossRef
39.
Zurück zum Zitat Chu, C.C.: An in-vitro study of the effect of buffer on the degradation of poly(glycolic acid) sutures. J. Biomed. Mater. Res. 15, 19–27 (1981)CrossRef Chu, C.C.: An in-vitro study of the effect of buffer on the degradation of poly(glycolic acid) sutures. J. Biomed. Mater. Res. 15, 19–27 (1981)CrossRef
40.
Zurück zum Zitat Chu, C.C.: The in-vitro degradation of poly(glycolic acid) sutures-effect of pH. J. Biomed. Mater. Res. 15, 795–804 (1981)CrossRef Chu, C.C.: The in-vitro degradation of poly(glycolic acid) sutures-effect of pH. J. Biomed. Mater. Res. 15, 795–804 (1981)CrossRef
41.
Zurück zum Zitat Chu, C.C.: Hydrolytic degradation of polyglycolic acid: tensile strength and crystallinity study. J. Appl. Polym. Sci. 26, 1727–1734 (1981)CrossRef Chu, C.C.: Hydrolytic degradation of polyglycolic acid: tensile strength and crystallinity study. J. Appl. Polym. Sci. 26, 1727–1734 (1981)CrossRef
42.
Zurück zum Zitat Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 12, 832–864 (2011)CrossRef Ulery, B.D., Nair, L.S., Laurencin, C.T.: Biomedical applications of biodegradable polymers. J. Polym. Sci. B Polym. Phys. 12, 832–864 (2011)CrossRef
43.
Zurück zum Zitat Chung, H.J., Kim, I.K., Kim, T.G., Park, T.G.: Highly open porous biodegradable microcarriers: In Vitro cultivation of chondrocytes for injectable delivery. Tissue Eng. Part A 14, 607–615 (2008)CrossRef Chung, H.J., Kim, I.K., Kim, T.G., Park, T.G.: Highly open porous biodegradable microcarriers: In Vitro cultivation of chondrocytes for injectable delivery. Tissue Eng. Part A 14, 607–615 (2008)CrossRef
44.
Zurück zum Zitat Zhu, X.H., Lee, L.Y., Jackson, J.S.H., Tong, Y.W., Wang, C.H.: Characterization of porous poly(d, l-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol. Bioeng. 100, 998–1009 (2008)CrossRef Zhu, X.H., Lee, L.Y., Jackson, J.S.H., Tong, Y.W., Wang, C.H.: Characterization of porous poly(d, l-lactic-co-glycolic acid) sponges fabricated by supercritical CO2 gas-foaming method as a scaffold for three-dimensional growth of Hep3B cells. Biotechnol. Bioeng. 100, 998–1009 (2008)CrossRef
45.
Zurück zum Zitat Simpson, R.L., Wiria, F.E., Amis, A.A., Chua, C.K., Leong, K.F., Hansen, U.N., Chandrasekaran, M., Lee, M.W.: Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J. Biomed. Mater. Res. Part B Appl. Biomater. 84B, 17–25 (2008) Simpson, R.L., Wiria, F.E., Amis, A.A., Chua, C.K., Leong, K.F., Hansen, U.N., Chandrasekaran, M., Lee, M.W.: Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and β-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J. Biomed. Mater. Res. Part B Appl. Biomater. 84B, 17–25 (2008)
46.
Zurück zum Zitat Arnold, M.M., Gorman, E.M., Schieber, L.J., Munson, E.J., Berkland, C.: NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J. Control Release 121, 100–109 (2007)CrossRef Arnold, M.M., Gorman, E.M., Schieber, L.J., Munson, E.J., Berkland, C.: NanoCipro encapsulation in monodisperse large porous PLGA microparticles. J. Control Release 121, 100–109 (2007)CrossRef
47.
Zurück zum Zitat Narayan, D., Venkatraman, S.S.: Effect of pore size and interpore distance on endothelial cell growth on polymers. J. Biomed. Mater. Res. Part A 87A, 710–718 (2008)CrossRef Narayan, D., Venkatraman, S.S.: Effect of pore size and interpore distance on endothelial cell growth on polymers. J. Biomed. Mater. Res. Part A 87A, 710–718 (2008)CrossRef
48.
Zurück zum Zitat Bashur, C.A., Dahlgren, L.A., Goldstein, A.S.: Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d, l-lactic-co-glycolic acid) meshes. Biomaterials 27, 5681–5688 (2006)CrossRef Bashur, C.A., Dahlgren, L.A., Goldstein, A.S.: Effect of fiber diameter and orientation on fibroblast morphology and proliferation on electrospun poly(d, l-lactic-co-glycolic acid) meshes. Biomaterials 27, 5681–5688 (2006)CrossRef
49.
Zurück zum Zitat Moffat, K.L., Kwei, A.S.-P., Spalazzi, J.P., Doty, S.B., Levine, W.N., Lu, H.H.: Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng. Part A 15, 115–126 (2009)CrossRef Moffat, K.L., Kwei, A.S.-P., Spalazzi, J.P., Doty, S.B., Levine, W.N., Lu, H.H.: Novel nanofiber-based scaffold for rotator cuff repair and augmentation. Tissue Eng. Part A 15, 115–126 (2009)CrossRef
50.
Zurück zum Zitat Aviss, K.J., Gough, J.E., Downes, S.: Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cell Mater 19, 193–204 (2010) Aviss, K.J., Gough, J.E., Downes, S.: Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cell Mater 19, 193–204 (2010)
51.
Zurück zum Zitat Ge, Z., Wang, L., Heng, B.C., Tian, X.-F., Lu, K., Fan, V.T.W., Yeo, J.F., Cao, T., Tan, E.: Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J. Biomater. Appl. 23, 533–547 (2009)CrossRef Ge, Z., Wang, L., Heng, B.C., Tian, X.-F., Lu, K., Fan, V.T.W., Yeo, J.F., Cao, T., Tan, E.: Proliferation and differentiation of human osteoblasts within 3D printed poly-lactic-co-glycolic acid scaffolds. J. Biomater. Appl. 23, 533–547 (2009)CrossRef
52.
Zurück zum Zitat Yoon, J.J., Chung, H.J., Lee, H.J., Park, T.G.: Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J. Biomed. Mater. Res., Part A 79A, 934–942 (2006)CrossRef Yoon, J.J., Chung, H.J., Lee, H.J., Park, T.G.: Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor. J. Biomed. Mater. Res., Part A 79A, 934–942 (2006)CrossRef
53.
Zurück zum Zitat Perron, J.K., Naguib, H.E., Daka, J., Chawla, A., Wilkins, R.J.: A study on the effect of degradation media on the physical and mechanical properties of porous PLGA 85/15 scaffolds. Biomed. Mater. Res. Part B 91B, 876–886 (2009)CrossRef Perron, J.K., Naguib, H.E., Daka, J., Chawla, A., Wilkins, R.J.: A study on the effect of degradation media on the physical and mechanical properties of porous PLGA 85/15 scaffolds. Biomed. Mater. Res. Part B 91B, 876–886 (2009)CrossRef
54.
Zurück zum Zitat Nair, L.S., Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)CrossRef Nair, L.S., Laurencin, C.T.: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32, 762–798 (2007)CrossRef
55.
Zurück zum Zitat Garkhal, K., Verma, S., Tikoo, K., Kumar, N.: Surface modified poly(L-lactide-co-ε-caprolactone) microspheres as scaffold for tissue engineering. J. Biomed. Mater. Res., Part A 82A, 747–756 (2007)CrossRef Garkhal, K., Verma, S., Tikoo, K., Kumar, N.: Surface modified poly(L-lactide-co-ε-caprolactone) microspheres as scaffold for tissue engineering. J. Biomed. Mater. Res., Part A 82A, 747–756 (2007)CrossRef
56.
Zurück zum Zitat Danhier, F., Vroman, B., Lecouturier, N., Crokart, N., Pourcelle, V., Freichels, H., Jerome, C., Marchand-Brynaert, J., Feron, O., Preat, V.J.: Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J. Control Release 140, 166–173 (2009)CrossRef Danhier, F., Vroman, B., Lecouturier, N., Crokart, N., Pourcelle, V., Freichels, H., Jerome, C., Marchand-Brynaert, J., Feron, O., Preat, V.J.: Targeting of tumor endothelium by RGD-grafted PLGA-nanoparticles loaded with Paclitaxel. J. Control Release 140, 166–173 (2009)CrossRef
57.
Zurück zum Zitat Pankajakshan, D., Philipose, L.P., Palakkal, M., Krishnan, K., Krishnan, L.K.J.: Development of a fibrin composite-coated poly(ε-caprolactone) scaffold for potential vascular tissue engineering applications. J. Biomed. Mater. Res., Part B 87B, 570–579 (2008)CrossRef Pankajakshan, D., Philipose, L.P., Palakkal, M., Krishnan, K., Krishnan, L.K.J.: Development of a fibrin composite-coated poly(ε-caprolactone) scaffold for potential vascular tissue engineering applications. J. Biomed. Mater. Res., Part B 87B, 570–579 (2008)CrossRef
58.
Zurück zum Zitat Chen, H., Huang, J., Yu, J., Liu, S., Ge, P.: Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int. J. Biol. Macromol. 48, 13–19 (2011)CrossRef Chen, H., Huang, J., Yu, J., Liu, S., Ge, P.: Electrospun chitosan-graft-poly (ε-caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Int. J. Biol. Macromol. 48, 13–19 (2011)CrossRef
59.
Zurück zum Zitat Guarino, V., Ambrosio, L.: The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ε-caprolactone-based composite scaffolds. Acta Biomater. 4, 1778–1787 (2008)CrossRef Guarino, V., Ambrosio, L.: The synergic effect of polylactide fiber and calcium phosphate particle reinforcement in poly ε-caprolactone-based composite scaffolds. Acta Biomater. 4, 1778–1787 (2008)CrossRef
60.
Zurück zum Zitat Plikk, P., Malberg, S., Albertsson, A.-C.: Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration. Biomacromolecules 10, 1259–1264 (2009)CrossRef Plikk, P., Malberg, S., Albertsson, A.-C.: Design of resorbable porous tubular copolyester scaffolds for use in nerve regeneration. Biomacromolecules 10, 1259–1264 (2009)CrossRef
61.
Zurück zum Zitat Zuo, Y., Yang, F., Wolke, J.G.C., Li, Y., Jansen, J.A.: Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater. 6, 1238–1247 (2010)CrossRef Zuo, Y., Yang, F., Wolke, J.G.C., Li, Y., Jansen, J.A.: Incorporation of biodegradable electrospun fibers into calcium phosphate cement for bone regeneration. Acta Biomater. 6, 1238–1247 (2010)CrossRef
62.
Zurück zum Zitat Mountziaris, P.M., Tzouanas, S.N., Mikos, A.G.: Dose effect of tumor necrosis factor-α on in vitro osteogenic differentiation of mesenchymal stem cells on biodegradable polymeric microfiber scaffolds. Biomaterials 31, 1666–1675 (2010)CrossRef Mountziaris, P.M., Tzouanas, S.N., Mikos, A.G.: Dose effect of tumor necrosis factor-α on in vitro osteogenic differentiation of mesenchymal stem cells on biodegradable polymeric microfiber scaffolds. Biomaterials 31, 1666–1675 (2010)CrossRef
63.
Zurück zum Zitat Hayami, J.W.S., Surrao, D.C., Waldman, S.D., Amsden, B.G.: Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J. Biomed. Mater. Res., Part A 92A, 1407–1420 (2010) Hayami, J.W.S., Surrao, D.C., Waldman, S.D., Amsden, B.G.: Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J. Biomed. Mater. Res., Part A 92A, 1407–1420 (2010)
64.
Zurück zum Zitat Vaquette, C., Kahn, C., Frochot, C., Nouvel, C., Six, J.-L., Isla, N.D., Luo, L.-H., Cooper-White, J., Rahouadj, R., Wang, X.J.: Aligned poly(l-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: A novel composite scaffold for ligament tissue engineering. Biomed. Mater. Res. Part A 94A, 1270–1282 (2010) Vaquette, C., Kahn, C., Frochot, C., Nouvel, C., Six, J.-L., Isla, N.D., Luo, L.-H., Cooper-White, J., Rahouadj, R., Wang, X.J.: Aligned poly(l-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: A novel composite scaffold for ligament tissue engineering. Biomed. Mater. Res. Part A 94A, 1270–1282 (2010)
65.
Zurück zum Zitat Li, W.-J., Chiang, H., Kuo, T.-F., Lee, H.-S., Jiang, C.-C., Tuan, R.S.: Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot. J. Tissue Eng. Regen Med. 3, 1–10 (2009)CrossRef Li, W.-J., Chiang, H., Kuo, T.-F., Lee, H.-S., Jiang, C.-C., Tuan, R.S.: Evaluation of articular cartilage repair using biodegradable nanofibrous scaffolds in a swine model: a pilot. J. Tissue Eng. Regen Med. 3, 1–10 (2009)CrossRef
66.
Zurück zum Zitat Jeong, S.I., Lee, A.-Y., Lee, Y.M., Shin, H.: Electrospun gelatin/poly(l-lactide-co-ε-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. J. Biomater. Sci. Polym. Ed. 19, 339–357 (2008)CrossRef Jeong, S.I., Lee, A.-Y., Lee, Y.M., Shin, H.: Electrospun gelatin/poly(l-lactide-co-ε-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. J. Biomater. Sci. Polym. Ed. 19, 339–357 (2008)CrossRef
67.
Zurück zum Zitat Nisbet, D.R., Rodda, A.E., Horne, M.K., Forsythe, J.S., Finkelstein, D.I.: Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30, 4573–4580 (2009)CrossRef Nisbet, D.R., Rodda, A.E., Horne, M.K., Forsythe, J.S., Finkelstein, D.I.: Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30, 4573–4580 (2009)CrossRef
68.
Zurück zum Zitat Liu, J.J., Wang, C.Y., Wang, J.G., Ruan, H.J., Fan, C.Y.: Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J. Biomed. Mater. Res. A 96a, 13–20 (2011) Liu, J.J., Wang, C.Y., Wang, J.G., Ruan, H.J., Fan, C.Y.: Peripheral nerve regeneration using composite poly(lactic acid-caprolactone)/nerve growth factor conduits prepared by coaxial electrospinning. J. Biomed. Mater. Res. A 96a, 13–20 (2011)
69.
Zurück zum Zitat Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A.P., Rofail, F., Smith, H., Wu, B.M., Shemin, R., Beygui, R.E., MacLellan, W.R.: Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29, 2907–2914 (2008)CrossRef Heydarkhan-Hagvall, S., Schenke-Layland, K., Dhanasopon, A.P., Rofail, F., Smith, H., Wu, B.M., Shemin, R., Beygui, R.E., MacLellan, W.R.: Three-dimensional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29, 2907–2914 (2008)CrossRef
70.
Zurück zum Zitat Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Onuma, F., Nakarahara, T.: Microbial degradation of polyurethane, polester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 51, 134–140 (1999) Nakajima-Kambe, T., Shigeno-Akutsu, Y., Nomura, N., Onuma, F., Nakarahara, T.: Microbial degradation of polyurethane, polester polyurethanes and polyether polyurethanes. Appl. Microbiol. Biotechnol. 51, 134–140 (1999)
71.
Zurück zum Zitat Guelcher, S.A., Gallagher, K.M., Didier, J.E., Klinedinst, D.B., Doctor, J.S., Goldstein, A.S.: Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater. 1, 471–484 (2005) Guelcher, S.A., Gallagher, K.M., Didier, J.E., Klinedinst, D.B., Doctor, J.S., Goldstein, A.S.: Synthesis of biocompatible segmented polyurethanes from aliphatic diisocyanates and diurea diol chain extenders. Acta Biomater. 1, 471–484 (2005)
72.
Zurück zum Zitat Hassan, M.K., Mauritz, K.A., Storey, R.F., Wiggins, J.S.: Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and l-lysine diisocyanate. J. Polym. Sci. A-Polym Chem. 44, 2990–3000 (2006)CrossRef Hassan, M.K., Mauritz, K.A., Storey, R.F., Wiggins, J.S.: Biodegradable aliphatic thermoplastic polyurethane based on poly(ε-caprolactone) and l-lysine diisocyanate. J. Polym. Sci. A-Polym Chem. 44, 2990–3000 (2006)CrossRef
73.
Zurück zum Zitat McGill, D.B., Motto, J.D.: An industrial outbreak of toxic hepatitis due to methylenedianiline. New Engl. J. Med. 291, 278–282 (1974)CrossRef McGill, D.B., Motto, J.D.: An industrial outbreak of toxic hepatitis due to methylenedianiline. New Engl. J. Med. 291, 278–282 (1974)CrossRef
74.
Zurück zum Zitat Gogolewski, S., Pennings, A.J.: Biodegradable materials of polylactides, 4. Porous biomedical materials based on mixtures of polylactides and polyurethanes. Makromol. Chem., Rapid Commun. 3, 839–845 (1982)CrossRef Gogolewski, S., Pennings, A.J.: Biodegradable materials of polylactides, 4. Porous biomedical materials based on mixtures of polylactides and polyurethanes. Makromol. Chem., Rapid Commun. 3, 839–845 (1982)CrossRef
75.
Zurück zum Zitat Storey, R.F., Taylor, A.E.: Effect of stannous octoate on the composition, molecular weight, and molecular weight distribution of ethyleneglycol-initiated poly(ecaprolactone). J. Macromol. Sci. Pure Appl. Chem. A35, 723–750 (1998)CrossRef Storey, R.F., Taylor, A.E.: Effect of stannous octoate on the composition, molecular weight, and molecular weight distribution of ethyleneglycol-initiated poly(ecaprolactone). J. Macromol. Sci. Pure Appl. Chem. A35, 723–750 (1998)CrossRef
76.
Zurück zum Zitat Ekholm, M., Helander, P., Hietanen, J., Lindqvist, C., Salo, A., Kellomaki, M., Suuronen, R.: A histological and immunohistochemical study of tissue reactions to solid poly(ortho ester) in rabbits. Int. J. Oral Maxillofac. Surg. 35, 631–635 (2006)CrossRef Ekholm, M., Helander, P., Hietanen, J., Lindqvist, C., Salo, A., Kellomaki, M., Suuronen, R.: A histological and immunohistochemical study of tissue reactions to solid poly(ortho ester) in rabbits. Int. J. Oral Maxillofac. Surg. 35, 631–635 (2006)CrossRef
77.
Zurück zum Zitat Zhang, Z., Foks, M.A., Grijpma, D.W., Feijen, J.: PTMC and MPEG-PTMC microparticles for hydrophilic drug delivery. J. Control Release 101, 392–394 (2005) Zhang, Z., Foks, M.A., Grijpma, D.W., Feijen, J.: PTMC and MPEG-PTMC microparticles for hydrophilic drug delivery. J. Control Release 101, 392–394 (2005)
78.
Zurück zum Zitat Kluin, O.S., Mei, H.C.vd., Busscher, H.J., Neut, D.: A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials 30, 4738–4742 (2009) Kluin, O.S., Mei, H.C.vd., Busscher, H.J., Neut, D.: A surface-eroding antibiotic delivery system based on poly-(trimethylene carbonate). Biomaterials 30, 4738–4742 (2009)
79.
Zurück zum Zitat Timbart, L., Tse, M.Y., Pang, S.C., Babasola, O., Amsden, B.G.: Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation. Macromol. Biosci. 9, 786–794 (2009)CrossRef Timbart, L., Tse, M.Y., Pang, S.C., Babasola, O., Amsden, B.G.: Low viscosity poly(trimethylene carbonate) for localized drug delivery: rheological properties and in vivo degradation. Macromol. Biosci. 9, 786–794 (2009)CrossRef
80.
Zurück zum Zitat Amsden, B.G., Timbart, L., Marecak, D., Chapanian, R., Tse, M.Y., Pang, S.C.: VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate) J. Controlled Release 145, 109–115 (2010) Amsden, B.G., Timbart, L., Marecak, D., Chapanian, R., Tse, M.Y., Pang, S.C.: VEGF-induced angiogenesis following localized delivery via injectable, low viscosity poly(trimethylene carbonate) J. Controlled Release 145, 109–115 (2010)
81.
Zurück zum Zitat Zurita, R., Puiggali, J., Rodriguez-Galan, A.: Loading and release of ibuprofen in multi- and monofilament surgical sutures. Macromol. Biosci. 6, 767–775 (2006)CrossRef Zurita, R., Puiggali, J., Rodriguez-Galan, A.: Loading and release of ibuprofen in multi- and monofilament surgical sutures. Macromol. Biosci. 6, 767–775 (2006)CrossRef
82.
Zurück zum Zitat Chen, W., Meng, F., Li, F., Ji, S.-J., Zhong, Z.: pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release. Biomacromolecules 10, 1727–1735 (2009)CrossRef Chen, W., Meng, F., Li, F., Ji, S.-J., Zhong, Z.: pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: synthesis and triggered drug release. Biomacromolecules 10, 1727–1735 (2009)CrossRef
83.
Zurück zum Zitat Sanson, C., Schatz, C., Meins, J.-F.L., Brulet, A., Soum, A., Lecommandoux, S.: Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(l-glutamic acid) polymersomes: size control and stability. Langmuir 26, 2751–2760 (2010)CrossRef Sanson, C., Schatz, C., Meins, J.-F.L., Brulet, A., Soum, A., Lecommandoux, S.: Biocompatible and biodegradable poly(trimethylene carbonate)-b-poly(l-glutamic acid) polymersomes: size control and stability. Langmuir 26, 2751–2760 (2010)CrossRef
84.
Zurück zum Zitat Sanson, C., Schatz, C., Meins, J.-F.L., Soum, A., Thevenot, J., Garanger, E., Lecommandoux, S.: A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J. Control Release 147, 428–435 (2010)CrossRef Sanson, C., Schatz, C., Meins, J.-F.L., Soum, A., Thevenot, J., Garanger, E., Lecommandoux, S.: A simple method to achieve high doxorubicin loading in biodegradable polymersomes. J. Control Release 147, 428–435 (2010)CrossRef
85.
Zurück zum Zitat Muggli, D.S., Burkoth, A.K., Keyser, S.A., Lee, H.R., Anseth, K.S.: Reaction behavior of biodegradable, photo cross-linkable polyanhydrides. Macromolecules 31, 4120–4125 (1998)CrossRef Muggli, D.S., Burkoth, A.K., Keyser, S.A., Lee, H.R., Anseth, K.S.: Reaction behavior of biodegradable, photo cross-linkable polyanhydrides. Macromolecules 31, 4120–4125 (1998)CrossRef
86.
Zurück zum Zitat Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997) Kohn, J., Langer, R.: Bioresorbable and bioerodible materials. In: Ratner, B.D., Hoffman, A.S., Schoen, F.J., Lemon, J.E. (eds.) An Introduction to Materials in Medicine, pp. 65–73. Academic Press, San Diego (1997)
87.
Zurück zum Zitat Brem, H., Piantadosi, S., Burger, P.C., Walker, M., Selker, R., Vick, N.A., Black, K., Sisti, M., Brem, G., Mohr, G., Muller, P., Morawetz, R., Schold, S.C.: Interventions affect aortic wall stiffness. Lancet 345, 1008 (1995)CrossRef Brem, H., Piantadosi, S., Burger, P.C., Walker, M., Selker, R., Vick, N.A., Black, K., Sisti, M., Brem, G., Mohr, G., Muller, P., Morawetz, R., Schold, S.C.: Interventions affect aortic wall stiffness. Lancet 345, 1008 (1995)CrossRef
88.
Zurück zum Zitat Attawia, M.A., Uhrich, K.E., Botchwey, E., Fan, M., Langer, R., Laurencin, C.T.: Cytotoxocity testing of poly(anhydride) for orthopaedic applications. J. Biomed. Mater. Res. 29, 1233–1240 (1995)CrossRef Attawia, M.A., Uhrich, K.E., Botchwey, E., Fan, M., Langer, R., Laurencin, C.T.: Cytotoxocity testing of poly(anhydride) for orthopaedic applications. J. Biomed. Mater. Res. 29, 1233–1240 (1995)CrossRef
Metadaten
Titel
Polymer Chemistry and Synthetic Polymers
verfasst von
Ortensia Ilaria Parisi
Manuela Curcio
Francesco Puoci
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-12478-0_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.