Skip to main content

2016 | OriginalPaper | Buchkapitel

20. Polymerization in Sprays: Atomization and Product Design of Reactive Polymer Solutions

verfasst von : Magnus Tewes, Urs Alexander Peuker

Erschienen in: Process-Spray

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The focus of this novel process is to polymerize a water-based solution in a spray with a conventional spray dryer to produce powder polymers. To achieve a successful process design, this project aims at the atomization of water-based polymer solutions, a novel device to measure reactivity and the design of a pre-reaction nozzle. To overcome the short residence time in a spray dryer a pre-reaction is necessary. It is done within the nozzle, which can be described as a combination of a laminar pipe reactor with a variable length and a twin-fluid nozzle in a lance shape in order to place it easily in a spray dryer. A model to optimize the progress of polymerization within the nozzle is based on kinetics from literature and a viscosity approach. That is made with the help of the novel measurement and the theory of rheokinetics. The increase of viscosity is dependent on the progress of chain growing and the conversion, respectively. A power law is presented to describe the viscosity with changing conversion at a constant initiator ratio. Another important aspect of optimizing the pre-reaction is the influence of the viscosity on the atomization. Investigations show the strong dependency of the molecular weight of the polymer on the drop formation because of its influence on the rheology of the solution. Sprays of different polymer water mixtures are measured by laser diffraction and a two parameter model, RRSB, is successfully used to describe the drop size distribution. The influence of the Sauter mean diameter \( {\overline{x}}_{1;2} \) is only able to be discussed if it is calculated by the RRSB fit. With increasing mass fractions of the high molecular weight polymer a turning point from drop to ligament formation is shown at low shear viscosity compared to lower molecular weight polymers. Finally a laboratory plant is presented that is producing polymer powders in one, but complex, process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals Povidone, Crospovidone and Copovidone. Berlin: Springer. ISBN 3-540-23412-8. Bühler, V. (2005). Polyvinylpyrrolidone excipients for pharmaceuticals Povidone, Crospovidone and Copovidone. Berlin: Springer. ISBN 3-540-23412-8.
2.
Zurück zum Zitat Glavis, F. J., Downing, D. G., & Grotta, H. M. (1958). Verfahren zur Polymerisation und Mischpolymerisation von Acrylsäuresalzen. German Patent 1040790. Glavis, F. J., Downing, D. G., & Grotta, H. M. (1958). Verfahren zur Polymerisation und Mischpolymerisation von Acrylsäuresalzen. German Patent 1040790.
3.
Zurück zum Zitat Freeman, C. S., Freeman, M. M., & Freeman, J. J. (2002). Water absorbing polymer. US Patent US 6,399,730 B1. Freeman, C. S., Freeman, M. M., & Freeman, J. J. (2002). Water absorbing polymer. US Patent US 6,399,730 B1.
4.
Zurück zum Zitat Binsbergen, F. L., Bos, A. N. R., & Santen, A. (1996). Process for preparing styrene polymers. US Patent US 5,587,438. Binsbergen, F. L., Bos, A. N. R., & Santen, A. (1996). Process for preparing styrene polymers. US Patent US 5,587,438.
5.
Zurück zum Zitat Norwood, D. D. (1967). Bulk polymerization of conjugated diolefins. US Patent US 3,350,377. Norwood, D. D. (1967). Bulk polymerization of conjugated diolefins. US Patent US 3,350,377.
6.
Zurück zum Zitat Sasaki, I., Mori, H., & Fujimoto, M. (1987). Process for the production of polyester. US Patent US 4,647,650. Sasaki, I., Mori, H., & Fujimoto, M. (1987). Process for the production of polyester. US Patent US 4,647,650.
7.
Zurück zum Zitat Schmid, M., Seidl, V., Distler, D., Hähnle, H.-J., Lösch, D., Moritz, H.-U., et al. (2004). Spray polymerisation method. EU Patent EP 1,660,540 (B1). Schmid, M., Seidl, V., Distler, D., Hähnle, H.-J., Lösch, D., Moritz, H.-U., et al. (2004). Spray polymerisation method. EU Patent EP 1,660,540 (B1).
8.
Zurück zum Zitat Krüger, M. (2003). Sprühpolymerisation: Aufbau und Untersuchung von Modellverfahren zur kontinuierlichen Gleichstrom-Sprühpolymerisation. PhD thesis, University of Hamburg, Germany. Krüger, M. (2003). Sprühpolymerisation: Aufbau und Untersuchung von Modellverfahren zur kontinuierlichen Gleichstrom-Sprühpolymerisation. PhD thesis, University of Hamburg, Germany.
9.
Zurück zum Zitat Hirleman, D. E. (1983). On-line calibration technique for laser diffraction droplet sizing instruments (ASME paper 83-GT-232). Hirleman, D. E. (1983). On-line calibration technique for laser diffraction droplet sizing instruments (ASME paper 83-GT-232).
10.
Zurück zum Zitat Bhatia, J. C., Domnick, J., Durst, F., & Tropea, C. (1988). Phase-doppler-anemometry and the log-hyperbolic distribution applied to liquid sprays. Particle and Particle Systems Characterization, 5, 153–164.CrossRef Bhatia, J. C., Domnick, J., Durst, F., & Tropea, C. (1988). Phase-doppler-anemometry and the log-hyperbolic distribution applied to liquid sprays. Particle and Particle Systems Characterization, 5, 153–164.CrossRef
11.
Zurück zum Zitat Walzel, P. (1990). Zerstäuben von Flüssigkeiten. Chemie Ingenieur Technik, 62, 983–994.CrossRef Walzel, P. (1990). Zerstäuben von Flüssigkeiten. Chemie Ingenieur Technik, 62, 983–994.CrossRef
12.
Zurück zum Zitat Leschonski, K., Alex, W., & Koglin, B. (1974). Teilchengrößenanalyse. 1. Darstellung und Auswertung von Teilchengrößenverteilungen (Fortsetzung). Chemie Ingenieur Technik,46, 101–106. Leschonski, K., Alex, W., & Koglin, B. (1974). Teilchengrößenanalyse. 1. Darstellung und Auswertung von Teilchengrößenverteilungen (Fortsetzung). Chemie Ingenieur Technik,46, 101–106.
13.
Zurück zum Zitat Hede, P. D., Bach, P., & Jensen, A. D. (2008). Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review. Chemical Engineering Science, 63, 3821–3842.CrossRef Hede, P. D., Bach, P., & Jensen, A. D. (2008). Two-fluid spray atomisation and pneumatic nozzles for fluid bed coating/agglomeration purposes: A review. Chemical Engineering Science, 63, 3821–3842.CrossRef
14.
Zurück zum Zitat Paloposki, T. (1994). Drop size distributions in liquid sprays. PhD thesis, University of Helsinki, Finland. Paloposki, T. (1994). Drop size distributions in liquid sprays. PhD thesis, University of Helsinki, Finland.
15.
Zurück zum Zitat Aliseda, A., Hopfinger, E. J., Lasheras, J. C., Kremer, D. M., Berchielli, A., & Connolly, E. K. (2008). Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. International Journal of Multiphase Flow, 34, 161–175.CrossRef Aliseda, A., Hopfinger, E. J., Lasheras, J. C., Kremer, D. M., Berchielli, A., & Connolly, E. K. (2008). Atomization of viscous and non-Newtonian liquids by a coaxial, high-speed gas jet. Experiments and droplet size modeling. International Journal of Multiphase Flow, 34, 161–175.CrossRef
16.
Zurück zum Zitat Varga, C. M., Lasheras, J. C., & Hopfinger, E. J. (2003). Initial breakup of a small-diameter liquid jet by a high-speed gas stream. Journal of Fluid Mechanics, 497, 405–434.CrossRef Varga, C. M., Lasheras, J. C., & Hopfinger, E. J. (2003). Initial breakup of a small-diameter liquid jet by a high-speed gas stream. Journal of Fluid Mechanics, 497, 405–434.CrossRef
17.
Zurück zum Zitat Christanti, Y., & Walker, L. M. (2001). Surface tension driven jet break up of strain-hardening polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 100, 9–26.CrossRef Christanti, Y., & Walker, L. M. (2001). Surface tension driven jet break up of strain-hardening polymer solutions. Journal of Non-Newtonian Fluid Mechanics, 100, 9–26.CrossRef
18.
Zurück zum Zitat Mun, R. P., Byars, J. A., & Boger, D. V. (1998). The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. Journal of Non-Newtonian Fluid Mechanics, 74, 285–297.CrossRef Mun, R. P., Byars, J. A., & Boger, D. V. (1998). The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. Journal of Non-Newtonian Fluid Mechanics, 74, 285–297.CrossRef
19.
Zurück zum Zitat Li, J., & Fontelos, M. A. (2003). Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Physics of Fluids, 15, 922–937.CrossRef Li, J., & Fontelos, M. A. (2003). Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study. Physics of Fluids, 15, 922–937.CrossRef
20.
Zurück zum Zitat Yıldırım, Ö. E., & Basaran, O. A. (2006). Dynamics of formation and dripping of drops of deformation-rate-thinning and -thickening liquids from capillary tubes. Journal of Non-Newtonian Fluid Mechanics, 136, 17–37.CrossRef Yıldırım, Ö. E., & Basaran, O. A. (2006). Dynamics of formation and dripping of drops of deformation-rate-thinning and -thickening liquids from capillary tubes. Journal of Non-Newtonian Fluid Mechanics, 136, 17–37.CrossRef
21.
Zurück zum Zitat Smith, D. E., Babcock, H. P., & Chu, S. (1999). Single-polymer dynamics in steady shear flow. Science, 283, 1724–1727.CrossRef Smith, D. E., Babcock, H. P., & Chu, S. (1999). Single-polymer dynamics in steady shear flow. Science, 283, 1724–1727.CrossRef
22.
Zurück zum Zitat Kim, K. Y., & Marshall, W. R. (1971). Drop-size distributions from pneumatic atomizers. AICHE Journal, 17, 575–584.CrossRef Kim, K. Y., & Marshall, W. R. (1971). Drop-size distributions from pneumatic atomizers. AICHE Journal, 17, 575–584.CrossRef
23.
Zurück zum Zitat Wagner, C., Amarouchene, Y., Bonn, D., & Eggers, J. (2005). Droplet detachment and satellite bead formation in viscoelastic fluids. Physical Review Letters, 95, 164504.CrossRef Wagner, C., Amarouchene, Y., Bonn, D., & Eggers, J. (2005). Droplet detachment and satellite bead formation in viscoelastic fluids. Physical Review Letters, 95, 164504.CrossRef
24.
Zurück zum Zitat Anderson, C. C., Rodriguez, F., & Thurston, D. A. (1979). Crosslinking aqueous poly(vinyl pyrrolidone) solutions by persulfate. Journal of Applied Polymer Science, 23, 2453–2462.CrossRef Anderson, C. C., Rodriguez, F., & Thurston, D. A. (1979). Crosslinking aqueous poly(vinyl pyrrolidone) solutions by persulfate. Journal of Applied Polymer Science, 23, 2453–2462.CrossRef
25.
Zurück zum Zitat Tenhu, H., Sundholm, F., & Bjorksten, J. (1984). Studies of crosslinked poly(N-vinyl-2-pyrrolidone) by calorimetry and by NMR. Makromolekulare Chemie, 185, 2011–2019.CrossRef Tenhu, H., Sundholm, F., & Bjorksten, J. (1984). Studies of crosslinked poly(N-vinyl-2-pyrrolidone) by calorimetry and by NMR. Makromolekulare Chemie, 185, 2011–2019.CrossRef
27.
Zurück zum Zitat Wittenberg, N. F. G. (2013). Kinetics and modeling of the radical polymerization of acrylic acid and of methacrylic acid in aqueous solution. PhD thesis, University of Göttingen, Germany. Wittenberg, N. F. G. (2013). Kinetics and modeling of the radical polymerization of acrylic acid and of methacrylic acid in aqueous solution. PhD thesis, University of Göttingen, Germany.
28.
Zurück zum Zitat Scott, R. A., & Peppas, N. A. (1997). Kinetic study of acrylic acid solution polymerization. AICHE Journal, 43, 135–144.CrossRef Scott, R. A., & Peppas, N. A. (1997). Kinetic study of acrylic acid solution polymerization. AICHE Journal, 43, 135–144.CrossRef
29.
Zurück zum Zitat Matyjaszewski, K., & Davis, T. P. (2002). Handbook of radical polymerization. Hoboken: Wiley-Interscience. ISBN 978-0-471-39274-3.CrossRef Matyjaszewski, K., & Davis, T. P. (2002). Handbook of radical polymerization. Hoboken: Wiley-Interscience. ISBN 978-0-471-39274-3.CrossRef
30.
Zurück zum Zitat Costa, C., Santos, V. H. S., Araujo, P. H. H., Sayer, C., Santos, A. F., Dariva, C., et al. (2010). Rapid decomposition of a cationic azo-initiator under microwave irradiation. Journal of Applied Polymer Science, 118, 1421–1429.CrossRef Costa, C., Santos, V. H. S., Araujo, P. H. H., Sayer, C., Santos, A. F., Dariva, C., et al. (2010). Rapid decomposition of a cationic azo-initiator under microwave irradiation. Journal of Applied Polymer Science, 118, 1421–1429.CrossRef
31.
Zurück zum Zitat Dougherty, T. J. (1961). Chemistry of 2,2-azobisisobutyramidine hydrochloride in aqueous solution: A water-soluble azo initiator. Journal of the American Chemical Society, 83, 4849–4853.CrossRef Dougherty, T. J. (1961). Chemistry of 2,2-azobisisobutyramidine hydrochloride in aqueous solution: A water-soluble azo initiator. Journal of the American Chemical Society, 83, 4849–4853.CrossRef
32.
Zurück zum Zitat Hammond, G. S., & Neuman, R. C. (1963). The mechanism of decomposition of azo compounds. III. Cage effects with positively charged geminate radical pairs. Journal of the American Chemical Society, 85, 1501–1508.CrossRef Hammond, G. S., & Neuman, R. C. (1963). The mechanism of decomposition of azo compounds. III. Cage effects with positively charged geminate radical pairs. Journal of the American Chemical Society, 85, 1501–1508.CrossRef
33.
Zurück zum Zitat Werber, J., Wang, Y. J., Milligan, M., Li, X., & Ji, J. A. (2011). Analysis of 2,2′-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions. Journal of Pharmaceutical Sciences, 100, 3307–3315.CrossRef Werber, J., Wang, Y. J., Milligan, M., Li, X., & Ji, J. A. (2011). Analysis of 2,2′-azobis (2-amidinopropane) dihydrochloride degradation and hydrolysis in aqueous solutions. Journal of Pharmaceutical Sciences, 100, 3307–3315.CrossRef
34.
Zurück zum Zitat Lacík, I., Beuermann, S., & Buback, M. (2003). PLP-SEC study into free-radical propagation rate of nonionized acrylic acid in aqueous solution. Macromolecules, 36, 9355–9363.CrossRef Lacík, I., Beuermann, S., & Buback, M. (2003). PLP-SEC study into free-radical propagation rate of nonionized acrylic acid in aqueous solution. Macromolecules, 36, 9355–9363.CrossRef
35.
Zurück zum Zitat Barth, J., Meiser, W., & Buback, M. (2012). SP-PLP-EPR study into termination and transfer kinetics of non-ionized acrylic acid polymerized in aqueous solution. Macromolecules, 45, 1339–1345.CrossRef Barth, J., Meiser, W., & Buback, M. (2012). SP-PLP-EPR study into termination and transfer kinetics of non-ionized acrylic acid polymerized in aqueous solution. Macromolecules, 45, 1339–1345.CrossRef
36.
Zurück zum Zitat Hess, K., & Sakurada, I. (1931). Zur Kenntnis der Staudingerschen Beziehung zwischen Viskosität und Molekulargewicht bei Cellulose-Präparaten. Berichte der Deutschen Chemischen Gesellschaft, 64, 1183–1192.CrossRef Hess, K., & Sakurada, I. (1931). Zur Kenntnis der Staudingerschen Beziehung zwischen Viskosität und Molekulargewicht bei Cellulose-Präparaten. Berichte der Deutschen Chemischen Gesellschaft, 64, 1183–1192.CrossRef
37.
Zurück zum Zitat Houwink, R. (1940). Zusammenhang zwischen viscosimetrisch und osmotisch bestimmten Polymerisationsgraden bei Hochpolymeren. Journal für Praktische Chemie, 157, 15–18.CrossRef Houwink, R. (1940). Zusammenhang zwischen viscosimetrisch und osmotisch bestimmten Polymerisationsgraden bei Hochpolymeren. Journal für Praktische Chemie, 157, 15–18.CrossRef
38.
Zurück zum Zitat Huggins, M. L. (1939). The viscosity of dilute solutions of long‐chain molecules. III. The Staudinger viscosity law. Journal of Applied Physics, 10, 700–704.CrossRef Huggins, M. L. (1939). The viscosity of dilute solutions of long‐chain molecules. III. The Staudinger viscosity law. Journal of Applied Physics, 10, 700–704.CrossRef
39.
Zurück zum Zitat Staudinger, H. (1930). Ueber hochpolymere Verbindungen. Kolloid-Zeitschrift, 51, 71–89.CrossRef Staudinger, H. (1930). Ueber hochpolymere Verbindungen. Kolloid-Zeitschrift, 51, 71–89.CrossRef
40.
Zurück zum Zitat Fikentscher, H., & Mark, H. (1929). Ueber die Viskosität lyophiler Kolloide. Kolloid-Zeitschrift, 49, 135–148.CrossRef Fikentscher, H., & Mark, H. (1929). Ueber die Viskosität lyophiler Kolloide. Kolloid-Zeitschrift, 49, 135–148.CrossRef
41.
Zurück zum Zitat Malkin, A. Y. (1980). Rheology in polymerization processes. Polymer Engineering and Science, 20, 1035–1044.CrossRef Malkin, A. Y. (1980). Rheology in polymerization processes. Polymer Engineering and Science, 20, 1035–1044.CrossRef
42.
Zurück zum Zitat Kulichikhin, S. G., Malkin, A. Y., Polushkina, O. M., & Kulichikhin, V. G. (1997). Rheokinetics of free-radical polymerization of acrylamide in an aqueous solution. Polymer Engineering and Science, 37, 1331–1338.CrossRef Kulichikhin, S. G., Malkin, A. Y., Polushkina, O. M., & Kulichikhin, V. G. (1997). Rheokinetics of free-radical polymerization of acrylamide in an aqueous solution. Polymer Engineering and Science, 37, 1331–1338.CrossRef
43.
Zurück zum Zitat Chevrel, M.-C., Brun, N., Hoppe, S., Meimaroglou, D., Falk, L., Chapron, D., et al. (2014). In situ monitoring of acrylic acid polymerization in aqueous solution using rheo-Raman technique. Experimental investigation and theoretical modelling. Chemical Engineering Science, 106, 242–252.CrossRef Chevrel, M.-C., Brun, N., Hoppe, S., Meimaroglou, D., Falk, L., Chapron, D., et al. (2014). In situ monitoring of acrylic acid polymerization in aqueous solution using rheo-Raman technique. Experimental investigation and theoretical modelling. Chemical Engineering Science, 106, 242–252.CrossRef
44.
Zurück zum Zitat Andrade, E. N. D. C. (1930). The viscosity of liquids. Nature, 125, 309–310.CrossRef Andrade, E. N. D. C. (1930). The viscosity of liquids. Nature, 125, 309–310.CrossRef
45.
Zurück zum Zitat Becker, H. (2003). Polymerisationsinhibierung von (Meth-) Acrylaten. PhD dissertation, Darmstadt, Germany. Becker, H. (2003). Polymerisationsinhibierung von (Meth-) Acrylaten. PhD dissertation, Darmstadt, Germany.
46.
Zurück zum Zitat Brand, R. H. (2011). Reaktionstechnische Studien zum Einfluss von Wasser auf die Stabilität von Acrylsäure. PhD dissertation, Darmstadt, Germany. Brand, R. H. (2011). Reaktionstechnische Studien zum Einfluss von Wasser auf die Stabilität von Acrylsäure. PhD dissertation, Darmstadt, Germany.
47.
Zurück zum Zitat Schulze, S., & Vogel, H. (1998). Aspects of the safe storage of acrylic monomers: Kinetics of the oxygen consumption. Chemical Engineering and Technology, 21, 829–837.CrossRef Schulze, S., & Vogel, H. (1998). Aspects of the safe storage of acrylic monomers: Kinetics of the oxygen consumption. Chemical Engineering and Technology, 21, 829–837.CrossRef
48.
Zurück zum Zitat Schulz, V. G. V., & Henrici, G. (1956). Reaktionskinetik der Polymerisationshemmung durch molekularen Sauerstoff. Makromolekulare Chemie, 18, 437–454.CrossRef Schulz, V. G. V., & Henrici, G. (1956). Reaktionskinetik der Polymerisationshemmung durch molekularen Sauerstoff. Makromolekulare Chemie, 18, 437–454.CrossRef
49.
Zurück zum Zitat Kale, L. T., & O’Driscoll, K. F. (1982). Rheokinetics of polymerization of n-laurylmethacrylate. Polymer Engineering and Science, 22, 402–409.CrossRef Kale, L. T., & O’Driscoll, K. F. (1982). Rheokinetics of polymerization of n-laurylmethacrylate. Polymer Engineering and Science, 22, 402–409.CrossRef
50.
Zurück zum Zitat Gorry, P. A. (1990). General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry, 62, 570–573.CrossRef Gorry, P. A. (1990). General least-squares smoothing and differentiation by the convolution (Savitzky-Golay) method. Analytical Chemistry, 62, 570–573.CrossRef
51.
Zurück zum Zitat Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.CrossRef Savitzky, A., & Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36, 1627–1639.CrossRef
52.
Zurück zum Zitat Ito, H., Shimizu, S., & Suzuki, S. (1955). Aqueous polymerization of acrylic acid and effect of pH. The Journal of the Society of Chemical Industry, Japan , 58, 194–196. Ito, H., Shimizu, S., & Suzuki, S. (1955). Aqueous polymerization of acrylic acid and effect of pH. The Journal of the Society of Chemical Industry, Japan , 58, 194–196.
53.
Zurück zum Zitat Blauer, G. (1953). Rate of polymerization of methacrylic acid in alkaline solution. Journal of Polymer Science, 11, 189–192.CrossRef Blauer, G. (1953). Rate of polymerization of methacrylic acid in alkaline solution. Journal of Polymer Science, 11, 189–192.CrossRef
54.
Zurück zum Zitat Olson, J. D., Morrison, R. E., & Wilson, L..C. (2008). Thermodynamics of hydrogen-bonding mixtures. 5. GE, HE, and TSE and zeotropy of water+acrylic acid. Industrial and Engineering Chemistry Research, 47, 5127–5131. Olson, J. D., Morrison, R. E., & Wilson, L..C. (2008). Thermodynamics of hydrogen-bonding mixtures. 5. GE, HE, and TSE and zeotropy of water+acrylic acid. Industrial and Engineering Chemistry Research, 47, 5127–5131.
55.
Zurück zum Zitat Säckel, W., & Nieken, U. (2013). Modelling of spray polymerisation processes. Macromolecular Symposia, 333, 297–304.CrossRef Säckel, W., & Nieken, U. (2013). Modelling of spray polymerisation processes. Macromolecular Symposia, 333, 297–304.CrossRef
Metadaten
Titel
Polymerization in Sprays: Atomization and Product Design of Reactive Polymer Solutions
verfasst von
Magnus Tewes
Urs Alexander Peuker
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-32370-1_20

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.