Skip to main content

2015 | OriginalPaper | Buchkapitel

7. Polymers in Tissue Engineering

verfasst von : Rebecca L. Heise, B. Adam Blakeney, Robert A. Pouliot

Erschienen in: Advanced Polymers in Medicine

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The landscape of polymer selection and processing techniques is constantly evolving in the field of tissue engineering and regenerative medicine. This chapter will cover new advances in polymers that are used to regenerate functional tissues used to repair or replace tissues lost to age, disease, injury, or congenital defect. The focus will be on new processing techniques and the incorporation of biologics or drug delivery to enhance cellular response and ingrowth into the polymers that will create a more functional tissue replacement by engineering the polymer tissue interface. Special emphasis is placed on new frontiers in tissue engineering the lung and liver.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Leahy, J.C., Hukins, D.W.: Viscoelastic properties of the nucleus pulposus of the intervertebral disk in compression. J. Mater. Sci. Mater. Med. 12, 689–692 (2001) Leahy, J.C., Hukins, D.W.: Viscoelastic properties of the nucleus pulposus of the intervertebral disk in compression. J. Mater. Sci. Mater. Med. 12, 689–692 (2001)
2.
Zurück zum Zitat Anderson, J.M., Andukuri, A., Lim, D.J., Jun, H.-W.: Modulating the gelation properties of self-assembling peptide amphiphiles. ACS Nano 3, 3447–3454 (2009). doi:10.1021/nn900884n Anderson, J.M., Andukuri, A., Lim, D.J., Jun, H.-W.: Modulating the gelation properties of self-assembling peptide amphiphiles. ACS Nano 3, 3447–3454 (2009). doi:10.​1021/​nn900884n
3.
Zurück zum Zitat Holmes, T.C., de Lacalle, S., Su, X., et al.: Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl. Acad. Sci. USA 97, 6728–6733 (2000) Holmes, T.C., de Lacalle, S., Su, X., et al.: Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proc. Natl. Acad. Sci. USA 97, 6728–6733 (2000)
5.
Zurück zum Zitat Banwell, E.F., Abelardo, E.S., Adams, D.J., et al.: Rational design and application of responsive alpha-helical peptide hydrogels. Nat. Mater. 8, 596–600 (2009). doi:10.1038/nmat2479 Banwell, E.F., Abelardo, E.S., Adams, D.J., et al.: Rational design and application of responsive alpha-helical peptide hydrogels. Nat. Mater. 8, 596–600 (2009). doi:10.​1038/​nmat2479
6.
Zurück zum Zitat Jun, H.-W., Paramonov, S.E., Dong, H., et al.: Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks. J. Biomater. Sci. Polym. Ed. 19, 665–676 (2008). doi:10.1163/156856208784089625 Jun, H.-W., Paramonov, S.E., Dong, H., et al.: Tuning the mechanical and bioresponsive properties of peptide-amphiphile nanofiber networks. J. Biomater. Sci. Polym. Ed. 19, 665–676 (2008). doi:10.​1163/​1568562087840896​25
8.
Zurück zum Zitat Chau, Y., Luo, Y., Cheung, A.C.Y., et al.: Incorporation of a matrix metalloproteinase-sensitive substrate into self-assembling peptides—a model for biofunctional scaffolds. Biomaterials 29, 1713–1719 (2008). doi:10.1016/j.biomaterials.2007.11.046 Chau, Y., Luo, Y., Cheung, A.C.Y., et al.: Incorporation of a matrix metalloproteinase-sensitive substrate into self-assembling peptides—a model for biofunctional scaffolds. Biomaterials 29, 1713–1719 (2008). doi:10.​1016/​j.​biomaterials.​2007.​11.​046
9.
Zurück zum Zitat Han, S., Cao, S., Wang, Y., et al.: Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chem. Weinh. Bergstr. Ger. 17, 13095–13102 (2011). doi:10.1002/chem.201101970 Han, S., Cao, S., Wang, Y., et al.: Self-assembly of short peptide amphiphiles: the cooperative effect of hydrophobic interaction and hydrogen bonding. Chem. Weinh. Bergstr. Ger. 17, 13095–13102 (2011). doi:10.​1002/​chem.​201101970
10.
Zurück zum Zitat Xu, X.-D., Jin, Y., Liu, Y., et al.: Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails. Colloids Surf. B Biointerfaces 81, 329–335 (2010). doi:10.1016/j.colsurfb.2010.07.027 Xu, X.-D., Jin, Y., Liu, Y., et al.: Self-assembly behavior of peptide amphiphiles (PAs) with different length of hydrophobic alkyl tails. Colloids Surf. B Biointerfaces 81, 329–335 (2010). doi:10.​1016/​j.​colsurfb.​2010.​07.​027
11.
Zurück zum Zitat Stendahl, J.C., Rao, M.S., Guler, M.O., Stupp, S.I.: Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv. Funct. Mater. 16, 499–508 (2006). doi:10.1002/adfm.200500161 Stendahl, J.C., Rao, M.S., Guler, M.O., Stupp, S.I.: Intermolecular forces in the self-assembly of peptide amphiphile nanofibers. Adv. Funct. Mater. 16, 499–508 (2006). doi:10.​1002/​adfm.​200500161
12.
Zurück zum Zitat Löwik, D.W.P.M., Shklyarevskiy, I.O., Ruizendaal, L., et al.: A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv. Mater. 19, 1191–1195 (2007). doi:10.1002/adma.200602295 Löwik, D.W.P.M., Shklyarevskiy, I.O., Ruizendaal, L., et al.: A highly ordered material from magnetically aligned peptide amphiphile nanofiber assemblies. Adv. Mater. 19, 1191–1195 (2007). doi:10.​1002/​adma.​200602295
13.
Zurück zum Zitat Feng, Y., Taraban, M., Yu, Y.B.: The effect of ionic strength on the mechanical, structural and transport properties of peptide hydrogels. Soft Matter. 8, 11723–11731 (2012). doi:10.1039/C2SM26572A Feng, Y., Taraban, M., Yu, Y.B.: The effect of ionic strength on the mechanical, structural and transport properties of peptide hydrogels. Soft Matter. 8, 11723–11731 (2012). doi:10.​1039/​C2SM26572A
14.
Zurück zum Zitat Ramachandran, S., Taraban, M.B., Trewhella, J., et al.: Effect of temperature during assembly on the structure and mechanical properties of peptide-based materials. Biomacromolecules 11, 1502–1506 (2010). doi:10.1021/bm100138m Ramachandran, S., Taraban, M.B., Trewhella, J., et al.: Effect of temperature during assembly on the structure and mechanical properties of peptide-based materials. Biomacromolecules 11, 1502–1506 (2010). doi:10.​1021/​bm100138m
15.
Zurück zum Zitat Yunoki, S., Ohyabu, Y., Hatayama, H.: Temperature-responsive gelation of type I collagen solutions involving fibril formation and genipin crosslinking as a potential injectable hydrogel. Int. J. Biomater. (2013). doi:10.1155/2013/620765 Yunoki, S., Ohyabu, Y., Hatayama, H.: Temperature-responsive gelation of type I collagen solutions involving fibril formation and genipin crosslinking as a potential injectable hydrogel. Int. J. Biomater. (2013). doi:10.​1155/​2013/​620765
16.
Zurück zum Zitat Alamein, M.A., Stephens, S., Liu, Q., et al.: Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Tissue Eng. Part C Methods 19, 458–472 (2012). doi:10.1089/ten.tec.2012.0417 Alamein, M.A., Stephens, S., Liu, Q., et al.: Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration. Tissue Eng. Part C Methods 19, 458–472 (2012). doi:10.​1089/​ten.​tec.​2012.​0417
17.
Zurück zum Zitat Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12, 1197–1211 (2006). doi:10.1089/ten.2006.12.1197 Pham, Q.P., Sharma, U., Mikos, A.G.: Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12, 1197–1211 (2006). doi:10.​1089/​ten.​2006.​12.​1197
18.
Zurück zum Zitat Baker, B.M., Gee, A.O., Metter, R.B., et al.: The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29, 2348–2358 (2008). doi:10.1016/j.biomaterials.2008.01.032 Baker, B.M., Gee, A.O., Metter, R.B., et al.: The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials 29, 2348–2358 (2008). doi:10.​1016/​j.​biomaterials.​2008.​01.​032
19.
Zurück zum Zitat Lee, S., Cho, S., Kim, M., et al.: Highly moldable electrospun clay-like fluffy nanofibers for three-dimensional scaffolds. ACS Appl. Mater. Interfaces 6, 1082–1091 (2014). doi:10.1021/am404627r Lee, S., Cho, S., Kim, M., et al.: Highly moldable electrospun clay-like fluffy nanofibers for three-dimensional scaffolds. ACS Appl. Mater. Interfaces 6, 1082–1091 (2014). doi:10.​1021/​am404627r
20.
Zurück zum Zitat Kim, T.G., Chung, H.J., Park, T.G.: Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 4, 1611–1619 (2008). doi:10.1016/j.actbio.2008.06.008 Kim, T.G., Chung, H.J., Park, T.G.: Macroporous and nanofibrous hyaluronic acid/collagen hybrid scaffold fabricated by concurrent electrospinning and deposition/leaching of salt particles. Acta Biomater. 4, 1611–1619 (2008). doi:10.​1016/​j.​actbio.​2008.​06.​008
21.
Zurück zum Zitat Nam, J., Huang, Y., Agarwal, S., Lannutti, J.: Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 13, 2249–2257 (2007). doi:10.1089/ten.2006.0306 Nam, J., Huang, Y., Agarwal, S., Lannutti, J.: Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 13, 2249–2257 (2007). doi:10.​1089/​ten.​2006.​0306
22.
Zurück zum Zitat Schneider, O.D., Loher, S., Brunner, T.J., et al.: Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 84, 350–362 (2008). doi:10.1002/jbm.b.30878 Schneider, O.D., Loher, S., Brunner, T.J., et al.: Cotton wool-like nanocomposite biomaterials prepared by electrospinning: in vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 84, 350–362 (2008). doi:10.​1002/​jbm.​b.​30878
24.
Zurück zum Zitat McHugh, K.J., Tao, S.L., Saint-Geniez, M.: A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering. J. Mater. Sci. Mater. Med. 24, 1659–1670 (2013). doi:10.1007/s10856-013-4934-1 McHugh, K.J., Tao, S.L., Saint-Geniez, M.: A novel porous scaffold fabrication technique for epithelial and endothelial tissue engineering. J. Mater. Sci. Mater. Med. 24, 1659–1670 (2013). doi:10.​1007/​s10856-013-4934-1
25.
Zurück zum Zitat Thomas, V., Jose, M.V., Chowdhury, S., et al.: Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J. Biomater. Sci. Polym. Ed. 17, 969–984 (2006) Thomas, V., Jose, M.V., Chowdhury, S., et al.: Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J. Biomater. Sci. Polym. Ed. 17, 969–984 (2006)
26.
Zurück zum Zitat Bashur, C.A., Shaffer, R.D., Dahlgren, L.A., et al.: Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A 15, 2435–2445 (2009). doi:10.1089/ten.tea.2008.0295 Bashur, C.A., Shaffer, R.D., Dahlgren, L.A., et al.: Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A 15, 2435–2445 (2009). doi:10.​1089/​ten.​tea.​2008.​0295
27.
Zurück zum Zitat Wang, H.B., Mullins, M.E., Cregg, J.M., et al.: Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6, 2970–2978 (2010). doi:10.1016/j.actbio.2010.02.020 Wang, H.B., Mullins, M.E., Cregg, J.M., et al.: Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6, 2970–2978 (2010). doi:10.​1016/​j.​actbio.​2010.​02.​020
28.
29.
Zurück zum Zitat Jha, B.S., Colello, R.J., Bowman, J.R., et al.: Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater. 7, 203–215 (2011). doi:10.1016/j.actbio.2010.08.004 Jha, B.S., Colello, R.J., Bowman, J.R., et al.: Two pole air gap electrospinning: Fabrication of highly aligned, three-dimensional scaffolds for nerve reconstruction. Acta Biomater. 7, 203–215 (2011). doi:10.​1016/​j.​actbio.​2010.​08.​004
30.
Zurück zum Zitat Kim, G.H., Yoon, H.: A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings. Appl. Phys. A 90, 389–394 (2008). doi:10.1007/s00339-007-4330-0 Kim, G.H., Yoon, H.: A direct-electrospinning process by combined electric field and air-blowing system for nanofibrous wound-dressings. Appl. Phys. A 90, 389–394 (2008). doi:10.​1007/​s00339-007-4330-0
31.
Zurück zum Zitat Li, D., Xia, Y.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933–938 (2004). doi:10.1021/nl049590f Li, D., Xia, Y.: Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett. 4, 933–938 (2004). doi:10.​1021/​nl049590f
32.
Zurück zum Zitat Klossner, R.R., Queen, H.A., Coughlin, A.J., Krause, W.E.: Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9, 2947–2953 (2008). doi:10.1021/bm800738u Klossner, R.R., Queen, H.A., Coughlin, A.J., Krause, W.E.: Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9, 2947–2953 (2008). doi:10.​1021/​bm800738u
33.
Zurück zum Zitat Francis, M.P., Sachs, P.C., Madurantakam, P.A., et al.: Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J. Biomed. Mater. Res. A 100, 1716–1724 (2012). doi:10.1002/jbm.a.34126 Francis, M.P., Sachs, P.C., Madurantakam, P.A., et al.: Electrospinning adipose tissue-derived extracellular matrix for adipose stem cell culture. J. Biomed. Mater. Res. A 100, 1716–1724 (2012). doi:10.​1002/​jbm.​a.​34126
34.
Zurück zum Zitat Guarino, V., Cirillo, V., Taddei, P., et al.: Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response. Macromol. Biosci. 11, 1694–1705 (2011). doi:10.1002/mabi.201100204 Guarino, V., Cirillo, V., Taddei, P., et al.: Tuning size scale and crystallinity of PCL electrospun fibres via solvent permittivity to address hMSC response. Macromol. Biosci. 11, 1694–1705 (2011). doi:10.​1002/​mabi.​201100204
35.
Zurück zum Zitat Nakano, A., Miki, N., Hishida, K., Hotta, A.: Solution parameters for the fabrication of thinner silicone fibers by electrospinning. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 86, 011801 (2012) Nakano, A., Miki, N., Hishida, K., Hotta, A.: Solution parameters for the fabrication of thinner silicone fibers by electrospinning. Phys. Rev. E: Stat., Nonlin, Soft Matter Phys. 86, 011801 (2012)
36.
Zurück zum Zitat Matthews, J.A., Wnek, G.E., Simpson, D.G., Bowlin, G.L.: Electrospinning of collagen nanofibers. Biomacromolecules 3, 232–238 (2002) Matthews, J.A., Wnek, G.E., Simpson, D.G., Bowlin, G.L.: Electrospinning of collagen nanofibers. Biomacromolecules 3, 232–238 (2002)
37.
Zurück zum Zitat Jiang, Q., Reddy, N., Zhang, S., et al.: Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system. J. Biomed. Mater. Res. A 101, 1237–1247 (2013). doi:10.1002/jbm.a.34422 Jiang, Q., Reddy, N., Zhang, S., et al.: Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system. J. Biomed. Mater. Res. A 101, 1237–1247 (2013). doi:10.​1002/​jbm.​a.​34422
38.
Zurück zum Zitat Braghirolli, D.I., Steffens, D., Quintiliano, K., et al.: The effect of sterilization methods on electronspun poly(lactide-co-glycolide) and subsequent adhesion efficiency of mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 102, 700–708 (2014). doi:10.1002/jbm.b.33049 Braghirolli, D.I., Steffens, D., Quintiliano, K., et al.: The effect of sterilization methods on electronspun poly(lactide-co-glycolide) and subsequent adhesion efficiency of mesenchymal stem cells. J. Biomed. Mater. Res. B Appl. Biomater. 102, 700–708 (2014). doi:10.​1002/​jbm.​b.​33049
39.
Zurück zum Zitat Rainer, A., Centola, M., Spadaccio, C., et al.: Comparative study of different techniques for the sterilization of poly-l-lactide electrospun microfibers: effectiveness vs. material degradation. Int. J. Artif. Organs 33, 76–85 (2010) Rainer, A., Centola, M., Spadaccio, C., et al.: Comparative study of different techniques for the sterilization of poly-l-lactide electrospun microfibers: effectiveness vs. material degradation. Int. J. Artif. Organs 33, 76–85 (2010)
41.
Zurück zum Zitat Vynckier, A.-K., Dierickx, L., Voorspoels, J., et al.: Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications. J. Pharm. Pharmacol. 66, 167–179 (2014). doi:10.1111/jphp.12091 Vynckier, A.-K., Dierickx, L., Voorspoels, J., et al.: Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications. J. Pharm. Pharmacol. 66, 167–179 (2014). doi:10.​1111/​jphp.​12091
42.
Zurück zum Zitat Temple J.P., Hutton D.L., Hung B.P., et al.: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A n/a–n/a. (2014). doi: 10.1002/jbm.a.35107 Temple J.P., Hutton D.L., Hung B.P., et al.: Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J. Biomed. Mater. Res. A n/a–n/a. (2014). doi: 10.​1002/​jbm.​a.​35107
44.
Zurück zum Zitat Butscher, A., Bohner, M., Hofmann, S., et al.: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 7, 907–920 (2011). doi:10.1016/j.actbio.2010.09.039 Butscher, A., Bohner, M., Hofmann, S., et al.: Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 7, 907–920 (2011). doi:10.​1016/​j.​actbio.​2010.​09.​039
46.
Zurück zum Zitat Yu, J., Lee, A.-R., Lin, W.-H., et al.: Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng. Part A (2014). doi:10.1089/ten.TEA.2013.0008 Yu, J., Lee, A.-R., Lin, W.-H., et al.: Electrospun PLGA fibers incorporated with functionalized biomolecules for cardiac tissue engineering. Tissue Eng. Part A (2014). doi:10.​1089/​ten.​TEA.​2013.​0008
47.
Zurück zum Zitat Tsai, W.-B., Chen, Y.-R., Liu, H.-L., Lai, J.-Y.: Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydr. Polym. 85, 129–137 (2011). doi:10.1016/j.carbpol.2011.02.003 Tsai, W.-B., Chen, Y.-R., Liu, H.-L., Lai, J.-Y.: Fabrication of UV-crosslinked chitosan scaffolds with conjugation of RGD peptides for bone tissue engineering. Carbohydr. Polym. 85, 129–137 (2011). doi:10.​1016/​j.​carbpol.​2011.​02.​003
48.
Zurück zum Zitat Tambralli, A., Blakeney, B., Anderson, J., et al.: A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 1, 025001 (2009). doi:10.1088/1758-5082/1/2/025001 Tambralli, A., Blakeney, B., Anderson, J., et al.: A hybrid biomimetic scaffold composed of electrospun polycaprolactone nanofibers and self-assembled peptide amphiphile nanofibers. Biofabrication 1, 025001 (2009). doi:10.​1088/​1758-5082/​1/​2/​025001
49.
Zurück zum Zitat Mager, M.D., LaPointe, V., Stevens, M.M.: Exploring and exploiting chemistry at the cell surface. Nat. Chem. 3, 582–589 (2011). doi:10.1038/nchem.1090 Mager, M.D., LaPointe, V., Stevens, M.M.: Exploring and exploiting chemistry at the cell surface. Nat. Chem. 3, 582–589 (2011). doi:10.​1038/​nchem.​1090
50.
Zurück zum Zitat Callahan, L.A.S., Xie, S., Barker, I.A., et al.: Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 34, 9089–9095 (2013). doi:10.1016/j.biomaterials.2013.08.028 Callahan, L.A.S., Xie, S., Barker, I.A., et al.: Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 34, 9089–9095 (2013). doi:10.​1016/​j.​biomaterials.​2013.​08.​028
51.
Zurück zum Zitat Gobin, A.S., West, J.L.: Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J. Biomed. Mater. Res. A 67, 255–259 (2003). doi:10.1002/jbm.a.10110 Gobin, A.S., West, J.L.: Val-ala-pro-gly, an elastin-derived non-integrin ligand: smooth muscle cell adhesion and specificity. J. Biomed. Mater. Res. A 67, 255–259 (2003). doi:10.​1002/​jbm.​a.​10110
52.
Zurück zum Zitat Duan, Y., Liu, Z., O’Neill, J., et al.: Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J. Cardiovasc. Transl. Res. 4, 605–615 (2011). doi:10.1007/s12265-011-9304-0 Duan, Y., Liu, Z., O’Neill, J., et al.: Hybrid gel composed of native heart matrix and collagen induces cardiac differentiation of human embryonic stem cells without supplemental growth factors. J. Cardiovasc. Transl. Res. 4, 605–615 (2011). doi:10.​1007/​s12265-011-9304-0
54.
Zurück zum Zitat Li, J.L., Cai, Y.L., Guo, Y.L., et al.: Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. J. Biomed. Mater. Res. B Appl. Biomater. 102, 651–658 (2014). doi:10.1002/jbm.b.33043 Li, J.L., Cai, Y.L., Guo, Y.L., et al.: Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. J. Biomed. Mater. Res. B Appl. Biomater. 102, 651–658 (2014). doi:10.​1002/​jbm.​b.​33043
55.
Zurück zum Zitat Wei, C., Dong, J.: Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting. J. Micromech. Microeng. 23, 025017 (2013). doi:10.1088/0960-1317/23/2/025017 Wei, C., Dong, J.: Direct fabrication of high-resolution three-dimensional polymeric scaffolds using electrohydrodynamic hot jet plotting. J. Micromech. Microeng. 23, 025017 (2013). doi:10.​1088/​0960-1317/​23/​2/​025017
56.
Zurück zum Zitat Hutmacher, D.W., Schantz, T., Zein, I., et al.: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55, 203–216 (2001) Hutmacher, D.W., Schantz, T., Zein, I., et al.: Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J. Biomed. Mater. Res. 55, 203–216 (2001)
57.
Zurück zum Zitat Reichert, J.C., Heymer, A., Berner, A., et al.: Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration. Biomed. Mater. Bristol Engl. 4, 065001 (2009). doi:10.1088/1748-6041/4/6/065001 Reichert, J.C., Heymer, A., Berner, A., et al.: Fabrication of polycaprolactone collagen hydrogel constructs seeded with mesenchymal stem cells for bone regeneration. Biomed. Mater. Bristol Engl. 4, 065001 (2009). doi:10.​1088/​1748-6041/​4/​6/​065001
58.
Zurück zum Zitat Thakkar, S., Ghebes, C.A., Ahmed, M., et al.: Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication 5, 025003 (2013). doi:10.1088/1758-5082/5/2/025003 Thakkar, S., Ghebes, C.A., Ahmed, M., et al.: Mesenchymal stromal cell-derived extracellular matrix influences gene expression of chondrocytes. Biofabrication 5, 025003 (2013). doi:10.​1088/​1758-5082/​5/​2/​025003
59.
Zurück zum Zitat Thomas, V., Jose, M.V., Chowdhury, S., et al.: Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J. Biomater. Sci. Polym. Ed. 17, 969–984 (2006) Thomas, V., Jose, M.V., Chowdhury, S., et al.: Mechano-morphological studies of aligned nanofibrous scaffolds of polycaprolactone fabricated by electrospinning. J. Biomater. Sci. Polym. Ed. 17, 969–984 (2006)
60.
Zurück zum Zitat Bashur, C.A., Shaffer, R.D., Dahlgren, L.A., et al.: Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A 15, 2435–2445 (2009). doi:10.1089/ten.tea.2008.0295 Bashur, C.A., Shaffer, R.D., Dahlgren, L.A., et al.: Effect of fiber diameter and alignment of electrospun polyurethane meshes on mesenchymal progenitor cells. Tissue Eng. Part A 15, 2435–2445 (2009). doi:10.​1089/​ten.​tea.​2008.​0295
62.
Zurück zum Zitat Morris, G.E., Bridge, J.C., Knox, A.J., et al.: Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds. Am. J. Physiol. Lung Cell. Mol. Physiol. (2014). doi:10.1152/ajplung.00318.2013 Morris, G.E., Bridge, J.C., Knox, A.J., et al.: Human airway smooth muscle maintain in situ cell orientation and phenotype when cultured on aligned electrospun scaffolds. Am. J. Physiol. Lung Cell. Mol. Physiol. (2014). doi:10.​1152/​ajplung.​00318.​2013
63.
Zurück zum Zitat Saha, S., Duan, X., Wu, L., et al.: Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition. Langmuir ACS J. Surf. Colloids 28, 2028–2034 (2012). doi:10.1021/la203846w Saha, S., Duan, X., Wu, L., et al.: Electrospun fibrous scaffolds promote breast cancer cell alignment and epithelial-mesenchymal transition. Langmuir ACS J. Surf. Colloids 28, 2028–2034 (2012). doi:10.​1021/​la203846w
64.
65.
Zurück zum Zitat Thompson, P.M., Tolbert, C.E., Shen, K., et al.: Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties. Struct. Lond. Engl. 1993 22, 697–706 (2014). doi:10.1016/j.str.2014.03.002 Thompson, P.M., Tolbert, C.E., Shen, K., et al.: Identification of an actin binding surface on vinculin that mediates mechanical cell and focal adhesion properties. Struct. Lond. Engl. 1993 22, 697–706 (2014). doi:10.​1016/​j.​str.​2014.​03.​002
67.
Zurück zum Zitat Chang, J.-C., Fujita, S., Tonami, H., et al.: Cell orientation and regulation of cell-cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomed. Mater. Bristol Engl. 8, 055002 (2013). doi:10.1088/1748-6041/8/5/055002 Chang, J.-C., Fujita, S., Tonami, H., et al.: Cell orientation and regulation of cell-cell communication in human mesenchymal stem cells on different patterns of electrospun fibers. Biomed. Mater. Bristol Engl. 8, 055002 (2013). doi:10.​1088/​1748-6041/​8/​5/​055002
68.
Zurück zum Zitat Chen, X., Fu, X., Shi, J., Wang, H.: Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomedicine Nanotechnol. Biol. Med. 9, 1283–1292 (2013). doi:10.1016/j.nano.2013.04.013 Chen, X., Fu, X., Shi, J., Wang, H.: Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments. Nanomedicine Nanotechnol. Biol. Med. 9, 1283–1292 (2013). doi:10.​1016/​j.​nano.​2013.​04.​013
69.
Zurück zum Zitat Whited, B.M., Rylander, M.N.: The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow. Biotechnol. Bioeng. 111, 184–195 (2014). doi:10.1002/bit.24995 Whited, B.M., Rylander, M.N.: The influence of electrospun scaffold topography on endothelial cell morphology, alignment, and adhesion in response to fluid flow. Biotechnol. Bioeng. 111, 184–195 (2014). doi:10.​1002/​bit.​24995
70.
Zurück zum Zitat Lücker, P.B., Javaherian, S., Soleas, J.P., et al.: A microgroove patterned multiwell cell culture plate for high-throughput studies of cell alignment. Biotechnol. Bioeng. (2014). doi:10.1002/bit.25298 Lücker, P.B., Javaherian, S., Soleas, J.P., et al.: A microgroove patterned multiwell cell culture plate for high-throughput studies of cell alignment. Biotechnol. Bioeng. (2014). doi:10.​1002/​bit.​25298
71.
Zurück zum Zitat Ushiki, T.: Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65, 109–126 (2002) Ushiki, T.: Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65, 109–126 (2002)
72.
Zurück zum Zitat Kwon, I.K., Kidoaki, S., Matsuda, T.: Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26, 3929–3939 (2005). doi:10.1016/j.biomaterials.2004.10.007 Kwon, I.K., Kidoaki, S., Matsuda, T.: Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26, 3929–3939 (2005). doi:10.​1016/​j.​biomaterials.​2004.​10.​007
73.
Zurück zum Zitat Wang, H.B., Mullins, M.E., Cregg, J.M., et al.: Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6, 2970–2978 (2010). doi:10.1016/j.actbio.2010.02.020 Wang, H.B., Mullins, M.E., Cregg, J.M., et al.: Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater. 6, 2970–2978 (2010). doi:10.​1016/​j.​actbio.​2010.​02.​020
74.
Zurück zum Zitat Kipen, H.M., Laskin, D.L.: Smaller is not always better: nanotechnology yields nanotoxicology. Am. J. Physiol. Lung. Cell. Mol. Physiol. 289, L696–L697 (2005). doi:10.1152/ajplung.00277.2005 Kipen, H.M., Laskin, D.L.: Smaller is not always better: nanotechnology yields nanotoxicology. Am. J. Physiol. Lung. Cell. Mol. Physiol. 289, L696–L697 (2005). doi:10.​1152/​ajplung.​00277.​2005
75.
76.
Zurück zum Zitat Smadja-Lamère, N., Boulanger, M.-C., Champagne, C., et al.: JNK-mediated phosphorylation of paxillin in adhesion assembly and tension-induced cell death by the adenovirus death factor E4orf4. J. Biol. Chem. 283, 34352–34364 (2008). doi:10.1074/jbc.M803364200 Smadja-Lamère, N., Boulanger, M.-C., Champagne, C., et al.: JNK-mediated phosphorylation of paxillin in adhesion assembly and tension-induced cell death by the adenovirus death factor E4orf4. J. Biol. Chem. 283, 34352–34364 (2008). doi:10.​1074/​jbc.​M803364200
77.
Zurück zum Zitat Pasapera, A.M., Schneider, I.C., Rericha, E., et al.: Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010). doi:10.1083/jcb.200906012 Pasapera, A.M., Schneider, I.C., Rericha, E., et al.: Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010). doi:10.​1083/​jcb.​200906012
79.
Zurück zum Zitat Jacot, J.G., McCulloch, A.D., Omens, J.H.: Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95, 3479–3487 (2008). doi:10.1529/biophysj.107.124545 Jacot, J.G., McCulloch, A.D., Omens, J.H.: Substrate stiffness affects the functional maturation of neonatal rat ventricular myocytes. Biophys. J. 95, 3479–3487 (2008). doi:10.​1529/​biophysj.​107.​124545
80.
Zurück zum Zitat Bhana, B., Iyer, R.K., Chen, W.L.K., et al.: Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 105, 1148–1160 (2010). doi:10.1002/bit.22647 Bhana, B., Iyer, R.K., Chen, W.L.K., et al.: Influence of substrate stiffness on the phenotype of heart cells. Biotechnol. Bioeng. 105, 1148–1160 (2010). doi:10.​1002/​bit.​22647
81.
Zurück zum Zitat Mi, H.-Y., Palumbo, S., Jing, X., et al.: Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size. J. Biomed. Mater. Res. B Appl. Biomater. (2014). doi:10.1002/jbm.b.33122 Mi, H.-Y., Palumbo, S., Jing, X., et al.: Thermoplastic polyurethane/hydroxyapatite electrospun scaffolds for bone tissue engineering: effects of polymer properties and particle size. J. Biomed. Mater. Res. B Appl. Biomater. (2014). doi:10.​1002/​jbm.​b.​33122
82.
83.
Zurück zum Zitat Lu, J., Zhou, S., Siech, M., et al.: Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. Br. J. Cancer 110, 409–420 (2014). doi:10.1038/bjc.2013.706 Lu, J., Zhou, S., Siech, M., et al.: Pancreatic stellate cells promote hapto-migration of cancer cells through collagen I-mediated signalling pathway. Br. J. Cancer 110, 409–420 (2014). doi:10.​1038/​bjc.​2013.​706
84.
Zurück zum Zitat Schenk, S., Hintermann, E., Bilban, M., et al.: Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 161, 197–209 (2003). doi:10.1083/jcb.200208145 Schenk, S., Hintermann, E., Bilban, M., et al.: Binding to EGF receptor of a laminin-5 EGF-like fragment liberated during MMP-dependent mammary gland involution. J. Cell Biol. 161, 197–209 (2003). doi:10.​1083/​jcb.​200208145
85.
Zurück zum Zitat Marinkovich, M.P.: Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer 7, 370–380 (2007). doi:10.1038/nrc2089 Marinkovich, M.P.: Tumour microenvironment: laminin 332 in squamous-cell carcinoma. Nat. Rev. Cancer 7, 370–380 (2007). doi:10.​1038/​nrc2089
86.
Zurück zum Zitat Muto, J., Morioka, Y., Yamasaki, K., et al.: Hyaluronan digestion controls DC migration from the skin. J. Clin. Invest. 124, 1309–1319 (2014). doi:10.1172/JCI67947 Muto, J., Morioka, Y., Yamasaki, K., et al.: Hyaluronan digestion controls DC migration from the skin. J. Clin. Invest. 124, 1309–1319 (2014). doi:10.​1172/​JCI67947
87.
Zurück zum Zitat Heise, R.L., Stober, V., Cheluvaraju, C., et al.: Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J. Biol. Chem. 286, 17435–17444 (2011). doi:10.1074/jbc.M110.137273 Heise, R.L., Stober, V., Cheluvaraju, C., et al.: Mechanical stretch induces epithelial-mesenchymal transition in alveolar epithelia via hyaluronan activation of innate immunity. J. Biol. Chem. 286, 17435–17444 (2011). doi:10.​1074/​jbc.​M110.​137273
89.
Zurück zum Zitat Kozlovskaya, V., Zavgorodnya, O., Chen, Y., et al.: Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv. Funct. Mater. 22, 3389–3398 (2012). doi:10.1002/adfm.201200138 Kozlovskaya, V., Zavgorodnya, O., Chen, Y., et al.: Ultrathin polymeric coatings based on hydrogen-bonded polyphenol for protection of pancreatic islet cells. Adv. Funct. Mater. 22, 3389–3398 (2012). doi:10.​1002/​adfm.​201200138
90.
Zurück zum Zitat Herrmann, D., Conway, J.R.W., Vennin, C., et al.: Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis (2014). doi:10.1093/carcin/bgu108 Herrmann, D., Conway, J.R.W., Vennin, C., et al.: Three-dimensional cancer models mimic cell-matrix interactions in the tumour microenvironment. Carcinogenesis (2014). doi:10.​1093/​carcin/​bgu108
91.
93.
95.
Zurück zum Zitat Garg T., Singh O., Arora S., Murthy R.S.R.: Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 29 (2012) Garg T., Singh O., Arora S., Murthy R.S.R.: Scaffold: a novel carrier for cell and drug delivery. Crit. Rev. Ther. Drug Carr. Syst. 29 (2012)
98.
Zurück zum Zitat Vilar, G., Tulla-Puche, J., Albericio, F.: Polymers and drug delivery systems. Curr. Drug Deliv. 9, 367–394 (2012) Vilar, G., Tulla-Puche, J., Albericio, F.: Polymers and drug delivery systems. Curr. Drug Deliv. 9, 367–394 (2012)
99.
Zurück zum Zitat Brewer, E., Coleman, J., Lowman, A.: Emerging technologies of polymeric nanoparticles in cancer drug delivery. J. Nanomater. 2011, 1–10 (2011). doi:10.1155/2011/408675 Brewer, E., Coleman, J., Lowman, A.: Emerging technologies of polymeric nanoparticles in cancer drug delivery. J. Nanomater. 2011, 1–10 (2011). doi:10.​1155/​2011/​408675
102.
Zurück zum Zitat Croy, S.R., Kwon, G.S.: Polymeric micelles for drug delivery. Curr. Pharm. Des. 12, 4669–4684 (2006) Croy, S.R., Kwon, G.S.: Polymeric micelles for drug delivery. Curr. Pharm. Des. 12, 4669–4684 (2006)
104.
Zurück zum Zitat Lallana, E., Fernandez-Trillo, F., Sousa-Herves, A., et al.: Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharm. Res. 29, 902–921 (2012). doi:10.1007/s11095-012-0683-y Lallana, E., Fernandez-Trillo, F., Sousa-Herves, A., et al.: Click chemistry with polymers, dendrimers, and hydrogels for drug delivery. Pharm. Res. 29, 902–921 (2012). doi:10.​1007/​s11095-012-0683-y
110.
Zurück zum Zitat Matricardi, P., Di Meo, C., Coviello, T., et al.: Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 65, 1172–1187 (2013). doi:10.1016/j.addr.2013.04.002 Matricardi, P., Di Meo, C., Coviello, T., et al.: Interpenetrating polymer networks polysaccharide hydrogels for drug delivery and tissue engineering. Adv. Drug Deliv. Rev. 65, 1172–1187 (2013). doi:10.​1016/​j.​addr.​2013.​04.​002
111.
Zurück zum Zitat Zhang, Z., Chen, L., Deng, M., et al.: Biodegradable thermo- and pH-responsive hydrogels for oral drug delivery. J. Polym. Sci. Part Polym. Chem. 49, 2941–2951 (2011). doi:10.1002/pola.24730 Zhang, Z., Chen, L., Deng, M., et al.: Biodegradable thermo- and pH-responsive hydrogels for oral drug delivery. J. Polym. Sci. Part Polym. Chem. 49, 2941–2951 (2011). doi:10.​1002/​pola.​24730
114.
Zurück zum Zitat Seif-Naraghi, S.B., Horn, D., Schup-Magoffin, P.J., Christman, K.L.: Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater. 8, 3695–3703 (2012). doi:10.1016/j.actbio.2012.06.030 Seif-Naraghi, S.B., Horn, D., Schup-Magoffin, P.J., Christman, K.L.: Injectable extracellular matrix derived hydrogel provides a platform for enhanced retention and delivery of a heparin-binding growth factor. Acta Biomater. 8, 3695–3703 (2012). doi:10.​1016/​j.​actbio.​2012.​06.​030
115.
Zurück zum Zitat Singelyn, J.M., Sundaramurthy, P., Johnson, T.D., et al.: Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59, 751–763 (2012). doi:10.1016/j.jacc.2011.10.888 Singelyn, J.M., Sundaramurthy, P., Johnson, T.D., et al.: Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J. Am. Coll. Cardiol. 59, 751–763 (2012). doi:10.​1016/​j.​jacc.​2011.​10.​888
118.
Zurück zum Zitat Reing, J.E., Zhang, L., Myers-Irvin, J., et al.: Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng. Part A 15, 605–614 (2008) Reing, J.E., Zhang, L., Myers-Irvin, J., et al.: Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng. Part A 15, 605–614 (2008)
119.
Zurück zum Zitat Brennan, E.P., Reing, J., Chew, D., et al.: Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 12, 2949–2955 (2006). doi:10.1089/ten.2006.12.2949 Brennan, E.P., Reing, J., Chew, D., et al.: Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 12, 2949–2955 (2006). doi:10.​1089/​ten.​2006.​12.​2949
122.
Zurück zum Zitat Thakur, R.A., Florek, C.A., Kohn, J., Michniak, B.B.: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int. J. Pharm. 364, 87–93 (2008). doi:10.1016/j.ijpharm.2008.07.033 Thakur, R.A., Florek, C.A., Kohn, J., Michniak, B.B.: Electrospun nanofibrous polymeric scaffold with targeted drug release profiles for potential application as wound dressing. Int. J. Pharm. 364, 87–93 (2008). doi:10.​1016/​j.​ijpharm.​2008.​07.​033
124.
Zurück zum Zitat Carlyle, W.C., McClain, J.B., Tzafriri, A.R., et al.: Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug. J. Controlled Release 162, 561–567 (2012). doi:10.1016/j.jconrel.2012.07.004 Carlyle, W.C., McClain, J.B., Tzafriri, A.R., et al.: Enhanced drug delivery capabilities from stents coated with absorbable polymer and crystalline drug. J. Controlled Release 162, 561–567 (2012). doi:10.​1016/​j.​jconrel.​2012.​07.​004
125.
Zurück zum Zitat Gulati, K., Ramakrishnan, S., Aw, M.S., et al.: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8, 449–456 (2012). doi:10.1016/j.actbio.2011.09.004 Gulati, K., Ramakrishnan, S., Aw, M.S., et al.: Biocompatible polymer coating of titania nanotube arrays for improved drug elution and osteoblast adhesion. Acta Biomater. 8, 449–456 (2012). doi:10.​1016/​j.​actbio.​2011.​09.​004
126.
Zurück zum Zitat Langer, R., Vacanti, J.P.: Tissue engineering. Science 260, 920–926 (1993) Langer, R., Vacanti, J.P.: Tissue engineering. Science 260, 920–926 (1993)
127.
Zurück zum Zitat Imparato, G., Urciuolo, F., Casale, C., Netti, P.A.: The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering. Biomaterials 34, 7851–7861 (2013). doi:10.1016/j.biomaterials.2013.06.062 Imparato, G., Urciuolo, F., Casale, C., Netti, P.A.: The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering. Biomaterials 34, 7851–7861 (2013). doi:10.​1016/​j.​biomaterials.​2013.​06.​062
128.
Zurück zum Zitat De Jonge, N., Foolen, J., Brugmans, M.C.P., et al.: Degree of scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng. Part A 20, 1747–1757 (2013). doi:10.1089/ten.tea.2013.0517 De Jonge, N., Foolen, J., Brugmans, M.C.P., et al.: Degree of scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng. Part A 20, 1747–1757 (2013). doi:10.​1089/​ten.​tea.​2013.​0517
129.
Zurück zum Zitat Saino, E., Focarete, M.L., Gualandi, C., et al.: Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules 12, 1900–1911 (2011). doi:10.1021/bm200248h Saino, E., Focarete, M.L., Gualandi, C., et al.: Effect of electrospun fiber diameter and alignment on macrophage activation and secretion of proinflammatory cytokines and chemokines. Biomacromolecules 12, 1900–1911 (2011). doi:10.​1021/​bm200248h
130.
Zurück zum Zitat Cortez Tornello, P.R., Caracciolo, P.C., Cuadrado, T.R., Abraham, G.A.: Structural characterization of electrospun micro/nanofibrous scaffolds by liquid extrusion porosimetry: a comparison with other techniques. Mater. Sci. Eng. C 41, 335–342 (2014). doi:10.1016/j.msec.2014.04.065 Cortez Tornello, P.R., Caracciolo, P.C., Cuadrado, T.R., Abraham, G.A.: Structural characterization of electrospun micro/nanofibrous scaffolds by liquid extrusion porosimetry: a comparison with other techniques. Mater. Sci. Eng. C 41, 335–342 (2014). doi:10.​1016/​j.​msec.​2014.​04.​065
131.
Zurück zum Zitat Takeda, T., Murphy, S., Uyama, S., et al.: Hepatocyte transplantation in swine using prevascularized polyvinyl alcohol sponges. Tissue Eng. 1, 253–262 (1995). doi:10.1089/ten.1995.1.253 Takeda, T., Murphy, S., Uyama, S., et al.: Hepatocyte transplantation in swine using prevascularized polyvinyl alcohol sponges. Tissue Eng. 1, 253–262 (1995). doi:10.​1089/​ten.​1995.​1.​253
132.
Zurück zum Zitat Uyama, S., Kaufmann, P.M., Takeda, T., Vacanti, J.P.: Delivery of whole liver-equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 55, 932–935 (1993) Uyama, S., Kaufmann, P.M., Takeda, T., Vacanti, J.P.: Delivery of whole liver-equivalent hepatocyte mass using polymer devices and hepatotrophic stimulation. Transplantation 55, 932–935 (1993)
133.
Zurück zum Zitat Hong, S.R., Lee, Y.M., Akaike, T.: Evaluation of a galactose-carrying gelatin sponge for hepatocytes culture and transplantation. J. Biomed. Mater. Res. A 67A, 733–741 (2003). doi:10.1002/jbm.a.10138 Hong, S.R., Lee, Y.M., Akaike, T.: Evaluation of a galactose-carrying gelatin sponge for hepatocytes culture and transplantation. J. Biomed. Mater. Res. A 67A, 733–741 (2003). doi:10.​1002/​jbm.​a.​10138
134.
Zurück zum Zitat Saadi, T., Nayshool, O., Carmel, J., et al.: Cellularized biosynthetic micro-hydrogel polymers, for intravascular liver tissue regeneration therapy. Tissue Eng. Part A (2014). doi:10.1089/ten.TEA.2013.0494 Saadi, T., Nayshool, O., Carmel, J., et al.: Cellularized biosynthetic micro-hydrogel polymers, for intravascular liver tissue regeneration therapy. Tissue Eng. Part A (2014). doi:10.​1089/​ten.​TEA.​2013.​0494
136.
Zurück zum Zitat Kundu, B., Kundu, S.C.: Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering. Biomed. Mater. Bristol Engl. 8, 055003 (2013). doi:10.1088/1748-6041/8/5/055003 Kundu, B., Kundu, S.C.: Bio-inspired fabrication of fibroin cryogels from the muga silkworm Antheraea assamensis for liver tissue engineering. Biomed. Mater. Bristol Engl. 8, 055003 (2013). doi:10.​1088/​1748-6041/​8/​5/​055003
137.
Zurück zum Zitat Simpson, L.L., Tanswell, A.K., Joneja, M.G.: Epithelial cell differentiation in organotypic cultures of fetal rat lung. Am. J. Anat. 172, 31–40 (1985). doi:10.1002/aja.1001720103 Simpson, L.L., Tanswell, A.K., Joneja, M.G.: Epithelial cell differentiation in organotypic cultures of fetal rat lung. Am. J. Anat. 172, 31–40 (1985). doi:10.​1002/​aja.​1001720103
138.
Zurück zum Zitat Xu, J., Liu, M., Post, M.: Differential regulation of extracellular matrix molecules by mechanical strain of fetal lung cells. Am. J. Physiol. Lung Cell Mol. Physiol. 276, L728–L735 (1999) Xu, J., Liu, M., Post, M.: Differential regulation of extracellular matrix molecules by mechanical strain of fetal lung cells. Am. J. Physiol. Lung Cell Mol. Physiol. 276, L728–L735 (1999)
139.
Zurück zum Zitat Andrade, C.F., Wong, A.P., Waddell, T.K., et al.: Cell-based tissue engineering for lung regeneration. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L510–L518 (2007). doi:10.1152/ajplung.00175.2006 Andrade, C.F., Wong, A.P., Waddell, T.K., et al.: Cell-based tissue engineering for lung regeneration. Am. J. Physiol. Lung Cell Mol. Physiol. 292, L510–L518 (2007). doi:10.​1152/​ajplung.​00175.​2006
140.
Zurück zum Zitat Ling, T.-Y., Liu, Y.-L., Huang, Y.-K., et al.: Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—Microbubble scaffold. Biomaterials 35, 5660–5669 (2014). doi:10.1016/j.biomaterials.2014.03.074 Ling, T.-Y., Liu, Y.-L., Huang, Y.-K., et al.: Differentiation of lung stem/progenitor cells into alveolar pneumocytes and induction of angiogenesis within a 3D gelatin—Microbubble scaffold. Biomaterials 35, 5660–5669 (2014). doi:10.​1016/​j.​biomaterials.​2014.​03.​074
141.
Zurück zum Zitat Singh, D., Zo, S.M., Kumar, A., Han, S.S.: Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. J. Biomater. Sci. Polym. Ed. 24, 1343–1359 (2013). doi:10.1080/09205063.2012.759505 Singh, D., Zo, S.M., Kumar, A., Han, S.S.: Engineering three-dimensional macroporous hydroxyethyl methacrylate-alginate-gelatin cryogel for growth and proliferation of lung epithelial cells. J. Biomater. Sci. Polym. Ed. 24, 1343–1359 (2013). doi:10.​1080/​09205063.​2012.​759505
142.
143.
Zurück zum Zitat Sudo, R., Mitaka, T., Ikeda, M., Tanishita, K.: Reconstruction of 3D stacked-up structures by rat small hepatocytes on microporous membranes. FASEB J. (2005). doi:10.1096/fj.04-3269fje Sudo, R., Mitaka, T., Ikeda, M., Tanishita, K.: Reconstruction of 3D stacked-up structures by rat small hepatocytes on microporous membranes. FASEB J. (2005). doi:10.​1096/​fj.​04-3269fje
144.
Zurück zum Zitat Liu, Y., Li, H., Yan, S., et al.: Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 15, 1044–1054 (2014). doi:10.1021/bm401926k Liu, Y., Li, H., Yan, S., et al.: Hepatocyte cocultures with endothelial cells and fibroblasts on micropatterned fibrous mats to promote liver-specific functions and capillary formation capabilities. Biomacromolecules 15, 1044–1054 (2014). doi:10.​1021/​bm401926k
147.
149.
Zurück zum Zitat Sato, T., Araki, M., Nakajima, N., et al.: Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses. J. Thorac. Cardiovasc. Surg. 139, 26–31 (2010). doi:10.1016/j.jtcvs.2009.04.006 Sato, T., Araki, M., Nakajima, N., et al.: Biodegradable polymer coating promotes the epithelization of tissue-engineered airway prostheses. J. Thorac. Cardiovasc. Surg. 139, 26–31 (2010). doi:10.​1016/​j.​jtcvs.​2009.​04.​006
150.
Zurück zum Zitat Shin, Y.S., Lee, B.H., Choi, J.W., et al.: Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold. Int. J. Pediatr. Otorhinolaryngol. 78, 32–38 (2014). doi:10.1016/j.ijporl.2013.10.014 Shin, Y.S., Lee, B.H., Choi, J.W., et al.: Tissue-engineered tracheal reconstruction using chondrocyte seeded on a porcine cartilage-derived substance scaffold. Int. J. Pediatr. Otorhinolaryngol. 78, 32–38 (2014). doi:10.​1016/​j.​ijporl.​2013.​10.​014
151.
Zurück zum Zitat Chang, J.W., Park, S.A., Park, J.-K., et al.: Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif. Organs 38, E95–E105 (2014). doi:10.1111/aor.12310 Chang, J.W., Park, S.A., Park, J.-K., et al.: Tissue-engineered tracheal reconstruction using three-dimensionally printed artificial tracheal graft: preliminary report. Artif. Organs 38, E95–E105 (2014). doi:10.​1111/​aor.​12310
152.
Zurück zum Zitat Miller, C., George, S., Niklason, L.: Developing a tissue-engineered model of the human bronchiole. J. Tissue Eng. Regen. Med. 4, 619–627 (2010). doi:10.1002/term.277 Miller, C., George, S., Niklason, L.: Developing a tissue-engineered model of the human bronchiole. J. Tissue Eng. Regen. Med. 4, 619–627 (2010). doi:10.​1002/​term.​277
153.
Zurück zum Zitat Ghezzi, C.E., Risse, P.-A., Marelli, B., et al.: An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Biomaterials 34, 1954–1966 (2013). doi:10.1016/j.biomaterials.2012.11.025 Ghezzi, C.E., Risse, P.-A., Marelli, B., et al.: An airway smooth muscle cell niche under physiological pulsatile flow culture using a tubular dense collagen construct. Biomaterials 34, 1954–1966 (2013). doi:10.​1016/​j.​biomaterials.​2012.​11.​025
154.
Zurück zum Zitat Price, A.P., England, K.A., Matson, A.M., et al.: Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. Part A 16, 2581–2591 (2010). doi:10.1089/ten.tea.2009.0659 Price, A.P., England, K.A., Matson, A.M., et al.: Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng. Part A 16, 2581–2591 (2010). doi:10.​1089/​ten.​tea.​2009.​0659
155.
Zurück zum Zitat Bonvillain, R.W., Danchuk, S., Sullivan, D.E., et al.: A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng. Part A 18, 2437–2452 (2012). doi:10.1089/ten.tea.2011.0594 Bonvillain, R.W., Danchuk, S., Sullivan, D.E., et al.: A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells. Tissue Eng. Part A 18, 2437–2452 (2012). doi:10.​1089/​ten.​tea.​2011.​0594
156.
Zurück zum Zitat Petersen, T.H., Calle, E.A., Colehour, M.B., Niklason, L.E.: Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195, 222–231 (2012). doi:10.1159/000324896 Petersen, T.H., Calle, E.A., Colehour, M.B., Niklason, L.E.: Matrix composition and mechanics of decellularized lung scaffolds. Cells Tissues Organs 195, 222–231 (2012). doi:10.​1159/​000324896
157.
Zurück zum Zitat Ghaedi, M., Calle, E.A., Mendez, J.J., et al.: Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix. J. Clin. Invest. 123, 4950–4962 (2013). doi:10.1172/JCI68793 Ghaedi, M., Calle, E.A., Mendez, J.J., et al.: Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix. J. Clin. Invest. 123, 4950–4962 (2013). doi:10.​1172/​JCI68793
158.
Zurück zum Zitat Uygun, B.E., Soto-Gutierrez, A., Yagi, H., et al.: Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010). doi:10.1038/nm.2170 Uygun, B.E., Soto-Gutierrez, A., Yagi, H., et al.: Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010). doi:10.​1038/​nm.​2170
159.
160.
162.
Zurück zum Zitat Cornelissen, C.G., Dietrich, M., Gromann, K., et al.: Fibronectin coating of oxygenator membranes enhances endothelial cell attachment. Biomed. Eng. 12, 7 (2013). doi:10.1186/1475-925X-12-7 Cornelissen, C.G., Dietrich, M., Gromann, K., et al.: Fibronectin coating of oxygenator membranes enhances endothelial cell attachment. Biomed. Eng. 12, 7 (2013). doi:10.​1186/​1475-925X-12-7
164.
Zurück zum Zitat Gou, M., Qu, X., Zhu, W., et al.: Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat. Commun. (2014). doi:10.1038/ncomms4774 Gou, M., Qu, X., Zhu, W., et al.: Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nat. Commun. (2014). doi:10.​1038/​ncomms4774
Metadaten
Titel
Polymers in Tissue Engineering
verfasst von
Rebecca L. Heise
B. Adam Blakeney
Robert A. Pouliot
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-12478-0_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.