Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 3/2012

01.03.2012 | Educational Article

PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes

verfasst von: Cameron Talischi, Glaucio H. Paulino, Anderson Pereira, Ivan F. M. Menezes

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 3/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an efficient Matlab code for structural topology optimization that includes a general finite element routine based on isoparametric polygonal elements which can be viewed as the extension of linear triangles and bilinear quads. The code also features a modular structure in which the analysis routine and the optimization algorithm are separated from the specific choice of topology optimization formulation. Within this framework, the finite element and sensitivity analysis routines contain no information related to the formulation and thus can be extended, developed and modified independently. We address issues pertaining to the use of unstructured meshes and arbitrary design domains in topology optimization that have received little attention in the literature. Also, as part of our examination of the topology optimization problem, we review the various steps taken in casting the optimal shape problem as a sizing optimization problem. This endeavor allows us to isolate the finite element and geometric analysis parameters and how they are related to the design variables of the discrete optimization problem. The Matlab code is explained in detail and numerical examples are presented to illustrate the capabilities of the code.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Polygonal discretizations have been used in computational solid mechanics, see for example Ghosh (2010). In topology optimization, they have been shown to outperform linear triangles and quads since they eliminate numerical instabilities such as checkerboarding (Langelaar 2007; Saxena 2008; Talischi et al. 2009, 2010).
 
2
This is in contrast to the relaxation setting which begins with \(\mathcal{O}\) defined as the set of all measurable subsets of Ω and addresses ill-posedness of the problem by further enlarging the space.
 
3
Here L  Ω;K) denotes the space of measurable functions defined on Ω that take values in \(K\subseteq\mathbb{R}\). For example, \(L^{\infty}(\Omega;\left\{ 0,1\right\} )\) and \(L^{\infty}(\Omega;\left[0,1\right])\) denote the space of measurable functions that take values in \(\left\{ 0,1\right\} \) and interval \(\left[0,1\right]\), respectively.
 
4
This function takes value of 1 at point x ∈ Ω if ρ(x) ≥ 0.5 and is zero otherwise – this is a simple choice of post-processing.
 
5
Variants of density methods involve different material interpolation functions, but are similar in spirit (Stolpe and Svanberg 2001b; Bruns 2005).
 
6
The distinction between the η and the admissible function \(\mathcal{P}_{s}(\eta)\) should be more apparent here: η is defined on half of the domain while \(\mathcal{P}_{s}(\eta)\) is defined over all of Ω.
 
7
m E essentially determines the dependence of the state equation on the design.
 
8
Filtering, symmetry, pattern repetition, and extrusion constraints can all be implemented by means of such linear maps
 
9
Alternatively we can view \(\mathcal{P}_{h}=\mathcal{I}_{h}\circ\mathcal{P}\) where \(\mathcal{I}_{h}\) maps any ρ h to \(\tilde{\rho}_{h}\), that is, \(\mathcal{I}_{h}(\rho)=\sum_{\ell=1}^{N}\rho(\mathbf{x}_{\ell}^{*})\chi_{\Omega_{\ell}}\)
 
10
In the remainder of the paper, we understand m E (y) and m V (y) as vectors with entries m E (y ) and m V (y ).
 
11
We caution that the PolyMesher files should be added to the Matlab path in order for this call to be successful. This mesh generator can be of course replaced by any other mesh generator (e.g. distMesh (Persson and Strang 2004)) as long as the node list, element connectivity cell and load and support vectors follow the same format.
 
12
Again we understand m E ′(y) and m V ′(y) as vectors with elements m E ′(y ) and m V ′(y ). Essentially m E ′(y) and m V ′(y) are the diagonal entries of Jacobian matrices \(J_{m_{E}}(\mathbf{y)}\) and \(J_{m_{V}}(\mathbf{y})\).
 
13
The local stiffness matrices are obtained by calling the function LocalK on either line 68 or line 70. If the mesh is known to be uniform, by setting the fem.Reg tag equal to 1 in the initialization of the fem structure, only one such call is made (on line 68) and thus there is no overhead for repeated calculation of the same element stiffness matrices.
 
14
These matrices are expected to have the following format: Supp must have three columns, the first holding the node number, the second and third columns giving support conditions for that node in the x- and y-direction, respectively. Value of 0 indicates that the node is free, and value of 1 specifies a fixed node. The nodal load vector Load is structured in a similar way, except for the values in the second and third columns, which represent the magnitude of the x- and y-components of the force.
 
15
Regarding the connection between (25) and the well-known expression \(\int_{\Omega_{\ell}}\mathbf{B}_{I}^{T}\mathbf{D}\mathbf{B}_{J}d\mathbf{x}\) for the element stiffness matrix, we refer the reader to Section 2.8 of Hughes (2000).
 
16
By convention, we set p n + 1 = p 1 in this expression.
 
17
The Voronoi mesh may be different from the one used in our results due to the random placement of seeds in PolyMesher.
 
18
The larger the radius of filtering, the longer it takes to compute the filtering matrix and also the larger the amount of memory needed to store it.
 
19
Note, however, that in PolyTop the volume function is normalized by the volume of the entire domain and elements can have different areas (so 1 is replaced by A in PolyTop). Also, the constraint function is defined as the difference between the normalized volume and specified volume fraction \(\overline{v}\).
 
20
The significance of approximating response dependent cost functions in “reciprocal” variables, i.e., when a = − 1, are discussed in Groenwold and Etman (2008) and references therein. For a = 1, one recovers the usual Taylor linearization.
 
Literatur
Zurück zum Zitat Allaire G (2001) Shape optimization by the homogenization method. Springer, Berlin Allaire G (2001) Shape optimization by the homogenization method. Springer, Berlin
Zurück zum Zitat Allaire G, Francfort GA (1998) Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann Inst Henri Poincare Anal 15(3):301–339MathSciNetMATHCrossRef Allaire G, Francfort GA (1998) Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann Inst Henri Poincare Anal 15(3):301–339MathSciNetMATHCrossRef
Zurück zum Zitat Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1(1):55–69MathSciNetMATHCrossRef Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1(1):55–69MathSciNetMATHCrossRef
Zurück zum Zitat Bendsoe MP (1989) Optimal design as material distribution problem. Struct Optim 1:193–202CrossRef Bendsoe MP (1989) Optimal design as material distribution problem. Struct Optim 1:193–202CrossRef
Zurück zum Zitat Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654 Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654
Zurück zum Zitat Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications. Springer, Berlin
Zurück zum Zitat Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8(4):251–285MathSciNetCrossRef Borrvall T (2001) Topology optimization of elastic continua using restriction. Arch Comput Methods Eng 8(4):251–285MathSciNetCrossRef
Zurück zum Zitat Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928MathSciNetMATHCrossRef Borrvall T, Petersson J (2001) Topology optimization using regularized intermediate density control. Comput Methods Appl Mech Eng 190(37–38):4911–4928MathSciNetMATHCrossRef
Zurück zum Zitat Cherkaev A (2000) Variational methods for structural optimization. Springer, New YorkMATHCrossRef Cherkaev A (2000) Variational methods for structural optimization. Springer, New YorkMATHCrossRef
Zurück zum Zitat Delfour MC, Zolésio JP (2001) Shapes and geometries: analysis, differential calculus, and optimization. Society for Industrial and Applied Mathematics, Philadelphia Delfour MC, Zolésio JP (2001) Shapes and geometries: analysis, differential calculus, and optimization. Society for Industrial and Applied Mathematics, Philadelphia
Zurück zum Zitat Ghosh S (2010) Micromechanical analysis and multi-scale modeling using the Voronoi cell finite element method. In: Computational mechanics and applied analysis. CRC Press, Boca Raton Ghosh S (2010) Micromechanical analysis and multi-scale modeling using the Voronoi cell finite element method. In: Computational mechanics and applied analysis. CRC Press, Boca Raton
Zurück zum Zitat Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316. doi:10.1002/nme.2071 MathSciNetMATHCrossRef Groenwold AA, Etman LFP (2008) On the equivalence of optimality criterion and sequential approximate optimization methods in the classical topology layout problem. Int J Numer Methods Eng 73(3):297–316. doi:10.​1002/​nme.​2071 MathSciNetMATHCrossRef
Zurück zum Zitat Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12CrossRef Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1–12CrossRef
Zurück zum Zitat Hughes TJR (2000) The finite element method: linear static and dynamic finite elemnt analysis. Dover, New York Hughes TJR (2000) The finite element method: linear static and dynamic finite elemnt analysis. Dover, New York
Zurück zum Zitat Kohn RV, Strang G (1986b) Optimal design and relaxation of variational problems. II. Commun Pure Appl Math 38(1):139–182CrossRef Kohn RV, Strang G (1986b) Optimal design and relaxation of variational problems. II. Commun Pure Appl Math 38(1):139–182CrossRef
Zurück zum Zitat Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70(1):47–61MathSciNetMATHCrossRef Kosaka I, Swan CC (1999) A symmetry reduction method for continuum structural topology optimization. Comput Struct 70(1):47–61MathSciNetMATHCrossRef
Zurück zum Zitat Langelaar M (2007) The use of convex uniform honeycomb tessellations in structural topology optimization. In: 7th world congress on structural and multidisciplinary optimization, Seoul, South Korea, May 21–25 Langelaar M (2007) The use of convex uniform honeycomb tessellations in structural topology optimization. In: 7th world congress on structural and multidisciplinary optimization, Seoul, South Korea, May 21–25
Zurück zum Zitat Mousavi SE, Xiao H, Sukumar N (2009) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng. doi:10.1002/nme.2759 Mousavi SE, Xiao H, Sukumar N (2009) Generalized gaussian quadrature rules on arbitrary polygons. Int J Numer Methods Eng. doi:10.​1002/​nme.​2759
Zurück zum Zitat Natarajan S, Bordas SPA, Mahapatra DR (2009) Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping. Int J Numer Methods Eng. doi:10.1002/nme.2589 MathSciNet Natarajan S, Bordas SPA, Mahapatra DR (2009) Numerical integration over arbitrary polygonal domains based on Schwarz–Christoffel conformal mapping. Int J Numer Methods Eng. doi:10.​1002/​nme.​2589 MathSciNet
Zurück zum Zitat Olhoff N, Bendsoe MP, Rasmussen J (1991) On cad-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1–3):259–279CrossRef Olhoff N, Bendsoe MP, Rasmussen J (1991) On cad-integrated structural topology and design optimization. Comput Methods Appl Mech Eng 89(1–3):259–279CrossRef
Zurück zum Zitat Petersson J (1999) Some convergence results in perimeter-controlled topology optimization. Comput Methods Appl Mech Eng 171(1–2):123–140MathSciNetMATHCrossRef Petersson J (1999) Some convergence results in perimeter-controlled topology optimization. Comput Methods Appl Mech Eng 171(1–2):123–140MathSciNetMATHCrossRef
Zurück zum Zitat Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidisc Optim 21:159–163CrossRef Rietz A (2001) Sufficiency of a finite exponent in SIMP (power law) methods. Struct Multidisc Optim 21:159–163CrossRef
Zurück zum Zitat Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252CrossRef Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4(3–4):250–252CrossRef
Zurück zum Zitat Saxena A (2008) A material-mask overlay strategy for continuum topology optimization of compliant mechanisms using honeycomb discretization. J Mech Des 130(8):2304-1-9. doi:10.1115/1.2936891 CrossRef Saxena A (2008) A material-mask overlay strategy for continuum topology optimization of compliant mechanisms using honeycomb discretization. J Mech Des 130(8):2304-1-9. doi:10.​1115/​1.​2936891 CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75CrossRef
Zurück zum Zitat Stolpe M, Svanberg K (2001a) On the trajectories of penalization methods for topology optimization. Struct Multidisc Optim 21(2):128–139CrossRef Stolpe M, Svanberg K (2001a) On the trajectories of penalization methods for topology optimization. Struct Multidisc Optim 21(2):128–139CrossRef
Zurück zum Zitat Stolpe M, Svanberg K (2001b) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124CrossRef Stolpe M, Svanberg K (2001b) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidisc Optim 22(2):116–124CrossRef
Zurück zum Zitat Stromberg LL, Beghini A, Baker WF, Paulino GH (2011) Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. Struct Multidisc Optim 43(2):165–180. doi:10.1007/s00158-010-0563-1 CrossRef Stromberg LL, Beghini A, Baker WF, Paulino GH (2011) Application of layout and topology optimization using pattern gradation for the conceptual design of buildings. Struct Multidisc Optim 43(2):165–180. doi:10.​1007/​s00158-010-0563-1 CrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATHCrossRef Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373MathSciNetMATHCrossRef
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82(6):671–698. doi:10.1002/nme.2763 MATH Talischi C, Paulino GH, Pereira A, Menezes IFM (2010) Polygonal finite elements for topology optimization: a unifying paradigm. Int J Numer Methods Eng 82(6):671–698. doi:10.​1002/​nme.​2763 MATH
Zurück zum Zitat Talischi C, Paulino GH, Pereira A, Menezes IFM (2011) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidisc Optim, accepted Talischi C, Paulino GH, Pereira A, Menezes IFM (2011) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidisc Optim, accepted
Zurück zum Zitat Tartar L (2000) An introduction to the homogenization method in optimal design. In: Optimal shape design: lecture notes in mathematics, no. 1740. Springer, Berlin, pp 47–156 Tartar L (2000) An introduction to the homogenization method in optimal design. In: Optimal shape design: lecture notes in mathematics, no. 1740. Springer, Berlin, pp 47–156
Zurück zum Zitat Van Dijk NP, Langelaar M, Van Keulen F (2009) A discrete formulation of a discrete level-set method treating multiple constraints. In: 8th World Congress on Structural and Multidisciplinary Optimization, June 1-5, 2009, Lisbon, Portugal Van Dijk NP, Langelaar M, Van Keulen F (2009) A discrete formulation of a discrete level-set method treating multiple constraints. In: 8th World Congress on Structural and Multidisciplinary Optimization, June 1-5, 2009, Lisbon, Portugal
Zurück zum Zitat Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MATHCrossRef Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MATHCrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef
Metadaten
Titel
PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes
verfasst von
Cameron Talischi
Glaucio H. Paulino
Anderson Pereira
Ivan F. M. Menezes
Publikationsdatum
01.03.2012
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 3/2012
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-011-0696-x

Weitere Artikel der Ausgabe 3/2012

Structural and Multidisciplinary Optimization 3/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.