Skip to main content

2019 | OriginalPaper | Buchkapitel

5. Porous Coordination Polymers

verfasst von : Abdul Malik P. Peedikakkal, N. N. Adarsh

Erschienen in: Functional Polymers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter discusses about porous coordination polymers (PCPs) and/or metal-organic frameworks and mainly emphasizes the historical background, their synthesis, structural properties, and potential applications (mainly gas storage). We organize the gas storage application of PCPs into three sections – H2, CH4, and CO2 storage – in order to highlight the important concerns we must know before designing new functional MOFs. In the case of H2 storage application of MOFs, we have discussed four important parameters which effect their successful design for H2 storage application with examples from the literature, such as (1) H2 adsorption condition (pressure and temperature), (2) inclusion of reducing agents in the MOF, (3) effect of structural defect in MOF, and (4) effect of adsorption sites in the MOF structure (examples: MOF-177, Pt/AC/IRMOF-8, UiO-66(Zr), Yb-BTC). Further, we highlight the investigation results of methane storage application of MOFs, with appropriate examples such as PCN-14, M2(dhtp) [M: open metal = Mg, Mn, Co, Ni, Zn; dhtp = 2,5-dihydroxyterephthalate], and UTSA-20. And then we discuss more details of various factors which we must take care before the successful design and synthesis of new MOFs for more CO2 storage such as: (1) the effect of open metal sites in the MOF, (2) the effect of the pore size and surface area of the framework, (3) effect of doping metals, (4) effect of amine functionalization in MOFs, (5) effect of nitrogen-rich MOFs, (6) effect of water molecules, with some important examples such as M-MOF-74 (M = Mg, Co, Fe, Zn, Ni), HKUST-1, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat (a) S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers. Angew. Chemie Int. Ed. 43(18), 2334–2375 (2004). (b) N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc. 127, 1504–1518 (2005) (c) O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature, 423, 705–714 (2003) (d) M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001) (d) S.R. Batten, R. Robson, Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998) (e) W.L. Leong, J.J. Vittal, One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications. Chem. Rev. 111(2), 688–764 (2010) (f) S.R. Batten, S.M. Neville, D.R. Turner, Coordination Polymers: Design, Analysis and Application (Royal Society of Chemistry, Cambridge, 2009) (g) M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012) (a) S. Kitagawa, R. Kitaura, S.I. Noro, Functional porous coordination polymers. Angew. Chemie Int. Ed. 43(18), 2334–2375 (2004). (b) N.L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe, O.M. Yaghi, Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units, J. Am. Chem. Soc. 127, 1504–1518 (2005) (c) O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials. Nature, 423, 705–714 (2003) (d) M. Eddaoudi, D.B. Moler, H.L. Li, B.L. Chen, T.M. Reineke, M. O’Keeffe, O.M. Yaghi, Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc. Chem. Res. 34, 319–330 (2001) (d) S.R. Batten, R. Robson, Interpenetrating nets: Ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998) (e) W.L. Leong, J.J. Vittal, One-dimensional coordination polymers: Complexity and diversity in structures, properties, and applications. Chem. Rev. 111(2), 688–764 (2010) (f) S.R. Batten, S.M. Neville, D.R. Turner, Coordination Polymers: Design, Analysis and Application (Royal Society of Chemistry, Cambridge, 2009) (g) M. O’Keeffe, O.M. Yaghi, Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012)
2.
Zurück zum Zitat (a) C. Janiak, J.K. Vieth, MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010) (b) K. Biradha, A. Ramanan, J.J. Vittal, Coordination polymers versus metal−organic frameworks. Cryst. Growth Des. 9(7), 2969–2970 (2009) (a) C. Janiak, J.K. Vieth, MOFs, MILs and more: Concepts, properties and applications for porous coordination networks (PCNs). New J. Chem. 34, 2366–2388 (2010) (b) K. Biradha, A. Ramanan, J.J. Vittal, Coordination polymers versus metal−organic frameworks. Cryst. Growth Des. 9(7), 2969–2970 (2009)
3.
Zurück zum Zitat A.F. Wells, Three-Dimensional Nets and Polyhedra (Wiley, New York, 1977) A.F. Wells, Three-Dimensional Nets and Polyhedra (Wiley, New York, 1977)
4.
Zurück zum Zitat (a) B.F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111(15), 5962–5964 (1989) (b) B.F. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 112(4), 1546–1554 (1990) (a) B.F. Hoskins, R. Robson, Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments. J. Am. Chem. Soc. 111(15), 5962–5964 (1989) (b) B.F. Hoskins, R. Robson, Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4″,4″′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc. 112(4), 1546–1554 (1990)
5.
Zurück zum Zitat R. Robson, A net-based approach to coordination polymers. J. Chem. Soc. Dalton Trans., 3735–3744 (2000) R. Robson, A net-based approach to coordination polymers. J. Chem. Soc. Dalton Trans., 3735–3744 (2000)
6.
Zurück zum Zitat J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, Weinheim, 1995)CrossRef J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives (Wiley-VCH, Weinheim, 1995)CrossRef
7.
Zurück zum Zitat (a) G.R. Desiraju, The Crystal as a Supramolecular Entity Perspectives in Supramolecular Chemistry (Wiley, New Jersey, 1996) (b) D. Dunitz, A. Gavezzotti, Supramolecular synthons: Validation and ranking of intermolecular interaction energies. Cryst. Growth Des. 12, 5873–5877 (2012) (a) G.R. Desiraju, The Crystal as a Supramolecular Entity Perspectives in Supramolecular Chemistry (Wiley, New Jersey, 1996) (b) D. Dunitz, A. Gavezzotti, Supramolecular synthons: Validation and ranking of intermolecular interaction energies. Cryst. Growth Des. 12, 5873–5877 (2012)
8.
Zurück zum Zitat G.M.J. Schmidt, Photodimerization in the solid-state. Pure Appl. Chem. 27, 647–678 (1971)CrossRef G.M.J. Schmidt, Photodimerization in the solid-state. Pure Appl. Chem. 27, 647–678 (1971)CrossRef
9.
Zurück zum Zitat G.R. Desiraju, Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007)CrossRef G.R. Desiraju, Crystal engineering: A holistic view. Angew. Chem. Int. Ed. 46, 8342–8356 (2007)CrossRef
10.
11.
Zurück zum Zitat K. Biradha, M. Sarkar, L. Rajput, Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chem. Commun., 4169–4179 (2006) K. Biradha, M. Sarkar, L. Rajput, Crystal engineering of coordination polymers using 4,4′-bipyridine as a bond between transition metal atoms. Chem. Commun., 4169–4179 (2006)
12.
Zurück zum Zitat B. Moulton, M.J. Zaworotko, From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101(6), 1629–1658 (2001)PubMedCrossRef B. Moulton, M.J. Zaworotko, From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids. Chem. Rev. 101(6), 1629–1658 (2001)PubMedCrossRef
13.
Zurück zum Zitat N.N. Adarsh, P. Dastidar, Coordination polymers: What has been achieved in going from innocent 4, 4′-bipyridine to bis-pyridyl ligands having a non-innocent backbone? Chem. Soc. Rev. 41(8), 3039–3060 (2012)PubMedCrossRef N.N. Adarsh, P. Dastidar, Coordination polymers: What has been achieved in going from innocent 4, 4′-bipyridine to bis-pyridyl ligands having a non-innocent backbone? Chem. Soc. Rev. 41(8), 3039–3060 (2012)PubMedCrossRef
14.
Zurück zum Zitat M. Nagarathinam, A.M.P. Peedikakkal, J.J. Vittal, Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. Chem. Commun. (42), 5277–5288 (2008) M. Nagarathinam, A.M.P. Peedikakkal, J.J. Vittal, Stacking of double bonds for photochemical [2+2] cycloaddition reactions in the solid state. Chem. Commun. (42), 5277–5288 (2008)
15.
Zurück zum Zitat O.M. Yaghi, Reticular chemistry – Construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138(48), 15507–15509 (2016)PubMedCrossRef O.M. Yaghi, Reticular chemistry – Construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 138(48), 15507–15509 (2016)PubMedCrossRef
16.
Zurück zum Zitat M. Witman, S. Ling, A. Gladysiak, K.C. Stylianou, B. Smit, B. Slater, M. Haranczyk, Rational design of a low-cost, high-performance metal–organic framework for hydrogen storage and carbon capture. J. Phys. Chem. C 121(2), 1171–1181 (2017)CrossRef M. Witman, S. Ling, A. Gladysiak, K.C. Stylianou, B. Smit, B. Slater, M. Haranczyk, Rational design of a low-cost, high-performance metal–organic framework for hydrogen storage and carbon capture. J. Phys. Chem. C 121(2), 1171–1181 (2017)CrossRef
17.
Zurück zum Zitat B.-Q. Ma, K.L. Mulfort, J.T. Hupp, Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem. 44(14), 4912–4914 (2005)PubMedCrossRef B.-Q. Ma, K.L. Mulfort, J.T. Hupp, Microporous pillared paddle-wheel frameworks based on mixed-ligand coordination of zinc ions. Inorg. Chem. 44(14), 4912–4914 (2005)PubMedCrossRef
18.
Zurück zum Zitat A.M.P. Peedikakkal, Y. M, R.-G. Song, S. Xiong, J.J.V. Gao, Influence of the anions on the formation of coordination polymeric structures of Co(II) with trans-1,2-bis(4-pyridyl)ethylene. Eur. J. Inorg. Chem. 2010, 3856–3865 (2010)CrossRef A.M.P. Peedikakkal, Y. M, R.-G. Song, S. Xiong, J.J.V. Gao, Influence of the anions on the formation of coordination polymeric structures of Co(II) with trans-1,2-bis(4-pyridyl)ethylene. Eur. J. Inorg. Chem. 2010, 3856–3865 (2010)CrossRef
19.
Zurück zum Zitat A.M.P. Peedikakkal, J.J. Vittal, Solid-state photochemical behavior of triple-stranded ladder coordination polymer. Inorg. Chem. 49, 10–12 (2010)PubMedCrossRef A.M.P. Peedikakkal, J.J. Vittal, Solid-state photochemical behavior of triple-stranded ladder coordination polymer. Inorg. Chem. 49, 10–12 (2010)PubMedCrossRef
20.
Zurück zum Zitat A.M.P. Peedikakkal, L.L. Koh, J.J. Vittal, Photodimerization of a 1D hydrogen-bonded zwitter-ionic Lead(II) complex and its isomerization in solution. Chem. Commun. (4), 441–443 (2008) A.M.P. Peedikakkal, L.L. Koh, J.J. Vittal, Photodimerization of a 1D hydrogen-bonded zwitter-ionic Lead(II) complex and its isomerization in solution. Chem. Commun. (4), 441–443 (2008)
21.
Zurück zum Zitat X.–.M. Chen, M.–.L. Tonga, Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 40, 162–170 (2007)PubMedCrossRef X.–.M. Chen, M.–.L. Tonga, Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry. Acc. Chem. Res. 40, 162–170 (2007)PubMedCrossRef
22.
Zurück zum Zitat S.S.-Y. Chui, S.M.-F. Los, J.P.H. Charmant, A.G. Open, I.D. Williams, A chemically functionalizable nanoporous material. Science 238, 1148–1150 (1999)CrossRef S.S.-Y. Chui, S.M.-F. Los, J.P.H. Charmant, A.G. Open, I.D. Williams, A chemically functionalizable nanoporous material. Science 238, 1148–1150 (1999)CrossRef
23.
Zurück zum Zitat D.M.P. Mingos, D.R. Baghurst, Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20, 1–47 (1991)CrossRef D.M.P. Mingos, D.R. Baghurst, Tilden Lecture. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev. 20, 1–47 (1991)CrossRef
24.
Zurück zum Zitat N. Stock, T. Bein, High-throughput synthesis of phosphonate based inorganicorganic hybrid compounds under hydrothermal conditions. Angew. Chem. Int. Ed. 43, 749–752 (2004)CrossRef N. Stock, T. Bein, High-throughput synthesis of phosphonate based inorganicorganic hybrid compounds under hydrothermal conditions. Angew. Chem. Int. Ed. 43, 749–752 (2004)CrossRef
25.
Zurück zum Zitat (a) S.R. Batten, Topology of interpenetration. Cryst. Eng. Comm. 3, 67–73 (2001) (b) M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O.M. Yaghi, Frameworks for extended solids: Geometrical design principles. J. Solid State Chem. 152, 3–20 (2000) (c) M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource. (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008) (d) I.A. Baburin, V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio, Interpenetrated three-dimensional networks of hydrogen-bonded organic species: A systematic analysis of the Cambridge structural database. Cryst. Growth Des. 8, 519–539 (2008) (a) S.R. Batten, Topology of interpenetration. Cryst. Eng. Comm. 3, 67–73 (2001) (b) M. O’Keeffe, M. Eddaoudi, H. Li, T. Reineke, O.M. Yaghi, Frameworks for extended solids: Geometrical design principles. J. Solid State Chem. 152, 3–20 (2000) (c) M. O’Keeffe, M.A. Peskov, S.J. Ramsden, O.M. Yaghi, The reticular chemistry structure resource. (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 41, 1782–1789 (2008) (d) I.A. Baburin, V.A. Blatov, L. Carlucci, G. Ciani, D.M. Proserpio, Interpenetrated three-dimensional networks of hydrogen-bonded organic species: A systematic analysis of the Cambridge structural database. Cryst. Growth Des. 8, 519–539 (2008)
26.
Zurück zum Zitat S.R. Batten, B.F. Hoskins, R. Robson, Interdigitation, interpenetration and intercalation in layered cuprous tricyanomethanide derivatives. Chem. Eur. J. 6, 156–161 (2000)PubMedCrossRef S.R. Batten, B.F. Hoskins, R. Robson, Interdigitation, interpenetration and intercalation in layered cuprous tricyanomethanide derivatives. Chem. Eur. J. 6, 156–161 (2000)PubMedCrossRef
27.
Zurück zum Zitat M.J. Manos, M.S. Markoulides, C.D. Malliakas, G.S. Papaefstathiou, N. Chronakis, M.G. Kanatzidis, P.N. Trikalitis, A.J. Tasiopoulos, A highly porous interpenetrated metal–organic framework from the use of a novel nanosized organic linker. Inorg. Chem. 50, 11297–11299 (2011)PubMedCrossRef M.J. Manos, M.S. Markoulides, C.D. Malliakas, G.S. Papaefstathiou, N. Chronakis, M.G. Kanatzidis, P.N. Trikalitis, A.J. Tasiopoulos, A highly porous interpenetrated metal–organic framework from the use of a novel nanosized organic linker. Inorg. Chem. 50, 11297–11299 (2011)PubMedCrossRef
28.
Zurück zum Zitat J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006)PubMedCrossRef J.L.C. Rowsell, O.M. Yaghi, Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 128, 1304–1315 (2006)PubMedCrossRef
29.
Zurück zum Zitat S. Ma, D. Sun, M.W. Ambrogio, J.A. Fillinger, S. Parkin, H.-C. Zhou, Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J. Am. Chem. Soc. 129, 1858–1859 (2007)PubMedCrossRef S. Ma, D. Sun, M.W. Ambrogio, J.A. Fillinger, S. Parkin, H.-C. Zhou, Framework-catenation isomerism in metal−organic frameworks and its impact on hydrogen uptake. J. Am. Chem. Soc. 129, 1858–1859 (2007)PubMedCrossRef
30.
Zurück zum Zitat M.J. Zawortko, Superstructural diversity in two dimensions: Crystal engineering of laminated solids. Chem. Commun., 1–9 (2001) M.J. Zawortko, Superstructural diversity in two dimensions: Crystal engineering of laminated solids. Chem. Commun., 1–9 (2001)
31.
Zurück zum Zitat H. Gudbjartson, K. Biradha, K.M. Poirier, M.J. Zaworotko, Novel nanoporous coordination polymer sustained by self-assembly of T-shaped moieties. J. Am. Chem. Soc. 121(11), 2599–2600 (1999)CrossRef H. Gudbjartson, K. Biradha, K.M. Poirier, M.J. Zaworotko, Novel nanoporous coordination polymer sustained by self-assembly of T-shaped moieties. J. Am. Chem. Soc. 121(11), 2599–2600 (1999)CrossRef
32.
Zurück zum Zitat B. Fernández, J.M. Seco, J. Cepeda, A.J. Calahorro, A. Rodríguez-Diéguez, Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. Cryst Eng Comm 17, 7636–7645 (2015)CrossRef B. Fernández, J.M. Seco, J. Cepeda, A.J. Calahorro, A. Rodríguez-Diéguez, Tuning the porosity through interpenetration of azobenzene-4,4′-dicarboxylate-based metal–organic frameworks. Cryst Eng Comm 17, 7636–7645 (2015)CrossRef
33.
Zurück zum Zitat S. Furukawa, J. Reboul, S. Diring, K. Sumida, S. Kitagawa, Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014)CrossRefPubMed S. Furukawa, J. Reboul, S. Diring, K. Sumida, S. Kitagawa, Structuring of metal–organic frameworks at the mesoscopic/macroscopic scale. Chem. Soc. Rev. 43, 5700–5734 (2014)CrossRefPubMed
34.
Zurück zum Zitat M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994)CrossRef M. Fujita, Y.J. Kwon, S. Washizu, K. Ogura, Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-bipyridine. J. Am. Chem. Soc. 116, 1151–1152 (1994)CrossRef
35.
Zurück zum Zitat O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995)CrossRef O.M. Yaghi, G. Li, H. Li, Selective binding and removal of guests in a microporous metal–organic framework. Nature 378, 703–706 (1995)CrossRef
36.
Zurück zum Zitat M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn)S. Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997)CrossRef M. Kondo, T. Yoshitomi, K. Seki, H. Matsuzaka, S. Kitagawa, Three-dimensional framework with channeling cavities for small molecules: {[M2(4,4′-bpy)3(NO3)4]·xH2O}n (M Co, Ni, Zn)S. Angew. Chem. Int. Ed. Engl. 36, 1725–1727 (1997)CrossRef
37.
Zurück zum Zitat H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRef H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRef
38.
Zurück zum Zitat K. Uemura, R. Matsuda, S. Kitagawa, Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420–2429 (2005)CrossRef K. Uemura, R. Matsuda, S. Kitagawa, Flexible microporous coordination polymers. J. Solid State Chem. 178, 2420–2429 (2005)CrossRef
39.
Zurück zum Zitat H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, Establishing microporosity in open metal−organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998)CrossRef H. Li, M. Eddaoudi, T.L. Groy, O.M. Yaghi, Establishing microporosity in open metal−organic frameworks: Gas sorption isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate). J. Am. Chem. Soc. 120, 8571–8572 (1998)CrossRef
40.
Zurück zum Zitat H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)PubMedCrossRef H.K. Chae, D.Y. Siberio-Pérez, J. Kim, Y.B. Go, M. Eddaoudi, A.J. Matzger, M. O’Keeffe, O.M. Yaghi, A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004)PubMedCrossRef
41.
Zurück zum Zitat H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultra-high porosity in metal-organic frameworks. Science 329, 424–428 (2010)PubMedCrossRef H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.O. Yazaydin, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultra-high porosity in metal-organic frameworks. Science 329, 424–428 (2010)PubMedCrossRef
42.
Zurück zum Zitat S.-Y. Zhang, Z. Zhang, M.J. Zaworotko, Topology, chirality and interpenetration in coordination polymers. Chem. Commun. 49, 9700–9703 (2013)CrossRef S.-Y. Zhang, Z. Zhang, M.J. Zaworotko, Topology, chirality and interpenetration in coordination polymers. Chem. Commun. 49, 9700–9703 (2013)CrossRef
43.
Zurück zum Zitat R.R. Yun, Z.Y. Lu, Y. Pan, X.Z. You, J.F. Bai, Formation of a metal–organic framework with high surface area and gas uptake by breaking edges off truncated cuboctahedral cages. Angew. Chem. Int. Ed. 52, 11282 (2013)CrossRef R.R. Yun, Z.Y. Lu, Y. Pan, X.Z. You, J.F. Bai, Formation of a metal–organic framework with high surface area and gas uptake by breaking edges off truncated cuboctahedral cages. Angew. Chem. Int. Ed. 52, 11282 (2013)CrossRef
44.
Zurück zum Zitat A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J. Am. Chem. Soc. 131(2), 458–460 (2008)CrossRef A.P. Nelson, O.K. Farha, K.L. Mulfort, J.T. Hupp, Supercritical processing as a route to high internal surface areas and permanent microporosity in metal−organic framework materials. J. Am. Chem. Soc. 131(2), 458–460 (2008)CrossRef
45.
Zurück zum Zitat H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydın, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)PubMedCrossRef H. Furukawa, N. Ko, Y.B. Go, N. Aratani, S.B. Choi, E. Choi, A.Ö. Yazaydın, R.Q. Snurr, M. O’Keeffe, J. Kim, O.M. Yaghi, Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)PubMedCrossRef
46.
Zurück zum Zitat O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010)PubMedCrossRef O.K. Farha, A.Ö. Yazaydın, I. Eryazici, C.D. Malliakas, B.G. Hauser, M.G. Kanatzidis, S.T. Nguyen, R.Q. Snurr, J.T. Hupp, De novo synthesis of a metal–organic framework material featuring ultrahigh surface area and gas storage capacities. Nat. Chem. 2, 944–948 (2010)PubMedCrossRef
47.
Zurück zum Zitat D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, An Isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010)CrossRef D. Yuan, D. Zhao, D. Sun, H.-C. Zhou, An Isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 49, 5357–5361 (2010)CrossRef
48.
Zurück zum Zitat (a) Z. Yang, Y. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129, 1673–1679 (2007) (b) S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage, Langmuir, 22, 1688–1700 (2006) (c) Y. Ren, G.H. Chia, Z. Gao, Metal–organic frameworks in fuel cell technologies. Nanotoday 8, 577–597 (2013) (a) Z. Yang, Y. Xia, R. Mokaya, Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J. Am. Chem. Soc. 129, 1673–1679 (2007) (b) S.K. Bhatia, A.L. Myers, Optimum conditions for adsorptive storage, Langmuir, 22, 1688–1700 (2006) (c) Y. Ren, G.H. Chia, Z. Gao, Metal–organic frameworks in fuel cell technologies. Nanotoday 8, 577–597 (2013)
49.
Zurück zum Zitat T.L. Easun, F. Moreau, Y. Yan, S. Yang, M. Schröder, Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chem. Soc. Rev. 46, 239–274 (2017)PubMedCrossRef T.L. Easun, F. Moreau, Y. Yan, S. Yang, M. Schröder, Structural and dynamic studies of substrate binding in porous metal–organic frameworks. Chem. Soc. Rev. 46, 239–274 (2017)PubMedCrossRef
50.
Zurück zum Zitat M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012)PubMedCrossRef M.P. Suh, H.J. Park, T.K. Prasad, D.-W. Lim, Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012)PubMedCrossRef
51.
Zurück zum Zitat (a) B. Sakintuna, F. Lamari-Darkrimb, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32, 1121–1140 (2007) (b) Y.-H. P. Zhang, Renewable carbohydrates are a potential high-density hydrogen carrier. Int. J. Hydrogen Energy 35, 10334–10342 (2010) (c) V.V. Struzhkin, B. Militzer, W.L. Mao, H.-K. Mao, R.J. Hemley, Hydrogen storage in molecular clathrates. Chem. Rev. 107, 4133–4151 (2007) (d) H.-M. Cheng, Q.-H. Yang, C. Liu, Hydrogen storage in carbon nanotubes. Carbon 39, 1447–1454 (2001) (a) B. Sakintuna, F. Lamari-Darkrimb, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review. Int. J. Hydrogen Energy 32, 1121–1140 (2007) (b) Y.-H. P. Zhang, Renewable carbohydrates are a potential high-density hydrogen carrier. Int. J. Hydrogen Energy 35, 10334–10342 (2010) (c) V.V. Struzhkin, B. Militzer, W.L. Mao, H.-K. Mao, R.J. Hemley, Hydrogen storage in molecular clathrates. Chem. Rev. 107, 4133–4151 (2007) (d) H.-M. Cheng, Q.-H. Yang, C. Liu, Hydrogen storage in carbon nanotubes. Carbon 39, 1447–1454 (2001)
52.
Zurück zum Zitat (a) H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 128 368–392 (2014) (b) L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009) (c) O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012) (a) H.W. Langmi, J. Ren, B. North, M. Mathe, D. Bessarabov, Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta 128 368–392 (2014) (b) L.J. Murray, M. Dinca, J.R. Long, Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009) (c) O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, Metal–organic framework materials with ultrahigh surface areas: Is the sky the limit? J. Am. Chem. Soc. 134, 15016–15021 (2012)
53.
Zurück zum Zitat (a) N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science, 300, 1127–1129 (2003) (b) G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guégan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003) (a) N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, J. Kim, M. O’Keeffe, O.M. Yaghi, Hydrogen storage in microporous metal-organic frameworks. Science, 300, 1127–1129 (2003) (b) G. Férey, M. Latroche, C. Serre, F. Millange, T. Loiseau, A. Percheron-Guégan, Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C–C6H4–CO2) (M = Al3+, Cr3+), MIL-53. Chem. Commun. 2976–2977 (2003)
54.
Zurück zum Zitat J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks – Updated. Energy Environ. Sci. 4, 2721–2735 (2011)CrossRef J. Sculley, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks – Updated. Energy Environ. Sci. 4, 2721–2735 (2011)CrossRef
55.
Zurück zum Zitat B. Panella, M. Hirscher, H. Putter, U. Muller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 16, 520–524 (2006)CrossRef B. Panella, M. Hirscher, H. Putter, U. Muller, Hydrogen adsorption in metal–organic frameworks: Cu-MOFs and Zn-MOFs compared. Adv. Funct. Mater. 16, 520–524 (2006)CrossRef
56.
Zurück zum Zitat (a) D. Saha, Z. Wei and S. Deng: Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177, Int. J. Hydrog. Energy, 33, 7479–7488 (2008). (b) J. L. Rowsell and O. M. Yaghi: Startegies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Ed., 2005, 44, 4670–4679. (a) D. Saha, Z. Wei and S. Deng: Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177, Int. J. Hydrog. Energy, 33, 7479–7488 (2008). (b) J. L. Rowsell and O. M. Yaghi: Startegies for hydrogen storage in metal-organic frameworks, Angew. Chem. Int. Ed., 2005, 44, 4670–4679.
57.
Zurück zum Zitat (a) Y. Li, R.T. Yang, Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006) (b) Y. Li, R.T. Yang, Hydrogen storage in metal−organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006) (a) Y. Li, R.T. Yang, Significantly enhanced hydrogen storage in metal−organic frameworks via spillover. J. Am. Chem. Soc. 128, 726–727 (2006) (b) Y. Li, R.T. Yang, Hydrogen storage in metal−organic frameworks by bridged hydrogen spillover. J. Am. Chem. Soc. 128, 8136–8137 (2006)
58.
Zurück zum Zitat W.C. Conner, J.L. Falconer, Spillover in heterogeneous catalysis. Chem. Rev. 95, 759–788 (1995)CrossRef W.C. Conner, J.L. Falconer, Spillover in heterogeneous catalysis. Chem. Rev. 95, 759–788 (1995)CrossRef
59.
Zurück zum Zitat D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974), pp. 593–724 D.W. Breck, Zeolite Molecular Sieves: Structure, Chemistry and Use (Wiley, New York, 1974), pp. 593–724
60.
Zurück zum Zitat J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, W. Pang, Coord. Chem. Rev. (2017) ASAP J. Ren, M. Ledwaba, N.M. Musyoka, H.W. Langmi, M. Mathe, S. Liao, W. Pang, Coord. Chem. Rev. (2017) ASAP
61.
Zurück zum Zitat A. Xin, J. Bai, Y. Pan, M.J. Zaworotko, Synthesis and enhanced H2 adsorption properties of a mesoporous nanocrystal of MOF-5: Controlling nano−/mesostructures of MOFs to improve their H2 heat of adsorption. Chem. Eur. J. 16, 13049–13052 (2010)PubMedCrossRef A. Xin, J. Bai, Y. Pan, M.J. Zaworotko, Synthesis and enhanced H2 adsorption properties of a mesoporous nanocrystal of MOF-5: Controlling nano−/mesostructures of MOFs to improve their H2 heat of adsorption. Chem. Eur. J. 16, 13049–13052 (2010)PubMedCrossRef
62.
Zurück zum Zitat Y.F. Feng, H. Jiang, M. Chen, Y.R. Wang, Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure. Powder Technol. 249, 38–42 (2013)CrossRef Y.F. Feng, H. Jiang, M. Chen, Y.R. Wang, Construction of an interpenetrated MOF-5 with high mesoporosity for hydrogen storage at low pressure. Powder Technol. 249, 38–42 (2013)CrossRef
63.
Zurück zum Zitat J.W. Ren, H. Langmi, N. Musyoka, M. Mathe, X.D. Kang, Tuning defects to facilitate hydrogen storage in core-shell MIL-101(Cr)@UiO-66(Zr) nanocrystals. Mater. Today: Proc. 2, 3964–3972 (2015) J.W. Ren, H. Langmi, N. Musyoka, M. Mathe, X.D. Kang, Tuning defects to facilitate hydrogen storage in core-shell MIL-101(Cr)@UiO-66(Zr) nanocrystals. Mater. Today: Proc. 2, 3964–3972 (2015)
64.
Zurück zum Zitat M. Erkartal, U. Sen, Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study. ACS Appl. Mater. Interfaces 10(1), 787–795 (2018)PubMedCrossRef M. Erkartal, U. Sen, Boronic acid moiety as functional defect in UiO-66 and its effect on hydrogen uptake capacity and selective CO2 adsorption: A comparative study. ACS Appl. Mater. Interfaces 10(1), 787–795 (2018)PubMedCrossRef
65.
Zurück zum Zitat D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks. Energy Environ. Sci. 1, 222–235 (2008)CrossRef D. Zhao, D. Yuan, H.-C. Zhou, The current status of hydrogen storage in metal–organic frameworks. Energy Environ. Sci. 1, 222–235 (2008)CrossRef
66.
Zurück zum Zitat K.L. Mulfort, O.K. Farha, C.L. Stern, A.A. Sarjeant, J.T. Hupp, Post-synthesis alkoxide formation within metal−organic framework materials: A strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131(11), 3866–3868 (2009)PubMedCrossRef K.L. Mulfort, O.K. Farha, C.L. Stern, A.A. Sarjeant, J.T. Hupp, Post-synthesis alkoxide formation within metal−organic framework materials: A strategy for incorporating highly coordinatively unsaturated metal ions. J. Am. Chem. Soc. 131(11), 3866–3868 (2009)PubMedCrossRef
67.
Zurück zum Zitat J. Luo, H. Xu, Y. Liu, Y. Zhao, L.L. Daemen, C. Brown, T.V. Timofeeva, S. Ma, H. Zhou, J. Am. Chem. Soc. 130(30), 9626–9627 (2008)PubMedCrossRef J. Luo, H. Xu, Y. Liu, Y. Zhao, L.L. Daemen, C. Brown, T.V. Timofeeva, S. Ma, H. Zhou, J. Am. Chem. Soc. 130(30), 9626–9627 (2008)PubMedCrossRef
68.
Zurück zum Zitat T. Burchell, M. Rogers. SAE Tech. Pap. Ser. 2000, 2000-01-2205 T. Burchell, M. Rogers. SAE Tech. Pap. Ser. 2000, 2000-01-2205
69.
Zurück zum Zitat Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014)PubMedCrossRef Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks. Chem. Soc. Rev. 43, 5657–5678 (2014)PubMedCrossRef
70.
Zurück zum Zitat S. Noro, S. Kitagawa, M. Kondo, K. Seki, A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew. Chem. Int. Ed. 39, 2081–2084 (2000)CrossRef S. Noro, S. Kitagawa, M. Kondo, K. Seki, A new, methane adsorbent, porous coordination polymer [{CuSiF6(4,4′-bipyridine)2}n]. Angew. Chem. Int. Ed. 39, 2081–2084 (2000)CrossRef
71.
Zurück zum Zitat M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)PubMedCrossRef M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.M. Yaghi, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage. Science 295, 469–472 (2002)PubMedCrossRef
72.
Zurück zum Zitat K. Seki, Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem. Commun., 1496–1497 (2001) K. Seki, Design of an adsorbent with an ideal pore structure for methane adsorption using metal complexes. Chem. Commun., 1496–1497 (2001)
73.
Zurück zum Zitat V.C. Menon, S. Komarneni, Porous adsorbents for vehicular natural gas storage: A review. J. Porous. Mater. 5, 43–58 (1998)CrossRef V.C. Menon, S. Komarneni, Porous adsorbents for vehicular natural gas storage: A review. J. Porous. Mater. 5, 43–58 (1998)CrossRef
74.
Zurück zum Zitat S. Ma, D. Sun, J.M. Simmons, C.D. Collier, D. Yuan, H.-C. Zhou, Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130(3), 1012–1016 (2008)PubMedCrossRef S. Ma, D. Sun, J.M. Simmons, C.D. Collier, D. Yuan, H.-C. Zhou, Metal-organic framework from an anthracene derivative containing nanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc. 130(3), 1012–1016 (2008)PubMedCrossRef
75.
Zurück zum Zitat H. Wu, W. Zhou, T. Yildirim, High-capacity methane storage in metal-organic frameworks M2(dhtp): The important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009)PubMedCrossRef H. Wu, W. Zhou, T. Yildirim, High-capacity methane storage in metal-organic frameworks M2(dhtp): The important role of open metal sites. J. Am. Chem. Soc. 131, 4995–5000 (2009)PubMedCrossRef
76.
Zurück zum Zitat Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O’Keeffe, B. Chen, A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 50, 3178–3181 (2011)CrossRef Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O’Keeffe, B. Chen, A metal–organic framework with optimized open metal sites and pore spaces for high methane storage at room temperature. Angew. Chem. Int. Ed. 50, 3178–3181 (2011)CrossRef
77.
Zurück zum Zitat C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012)CrossRef C.E. Wilmer, M. Leaf, C.Y. Lee, O.K. Farha, B.G. Hauser, J.T. Hupp, R.Q. Snurr, Large-scale screening of hypothetical metal–organic frameworks. Nat. Chem. 4, 83–89 (2012)CrossRef
78.
Zurück zum Zitat C. Liang, Z. Shi, C. He, J. Tan, H. Zhou, H. Zhou, Y. Lee, Y. Zhang, Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal−organic frameworks. J. Am. Chem. Soc. 139, 13300–13303 (2017)PubMedCrossRef C. Liang, Z. Shi, C. He, J. Tan, H. Zhou, H. Zhou, Y. Lee, Y. Zhang, Engineering of pore geometry for ultrahigh capacity methane storage in mesoporous metal−organic frameworks. J. Am. Chem. Soc. 139, 13300–13303 (2017)PubMedCrossRef
79.
Zurück zum Zitat C. Figueres, H.J. Schellnhuber, G. Whiteman, J. Rockström, A. Hobley, S. Rahmstorf, Three years to safeguard our climate. Nature 546, 593–595 (2017)PubMedCrossRef C. Figueres, H.J. Schellnhuber, G. Whiteman, J. Rockström, A. Hobley, S. Rahmstorf, Three years to safeguard our climate. Nature 546, 593–595 (2017)PubMedCrossRef
81.
Zurück zum Zitat J. Johnson, Chem. Eng. News 82, 36 (2004) J. Johnson, Chem. Eng. News 82, 36 (2004)
82.
Zurück zum Zitat A. Lu, G. Hao, Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 109, 484–503 (2013)CrossRef A. Lu, G. Hao, Porous materials for carbon dioxide capture. Annu. Rep. Prog. Chem. Sect. A: Inorg. Chem. 109, 484–503 (2013)CrossRef
83.
Zurück zum Zitat K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)PubMedCrossRef K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T. Bae, J.R. Long, Carbon dioxide capture in metal-organic frameworks. Chem. Rev. 112, 724–781 (2012)PubMedCrossRef
84.
Zurück zum Zitat A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)PubMedCrossRef A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 127, 17998–17999 (2005)PubMedCrossRef
85.
Zurück zum Zitat R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008)PubMedCrossRef R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe, O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008)PubMedCrossRef
86.
Zurück zum Zitat S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008)PubMedCrossRef S.R. Caskey, A.G. Wong-Foy, A.J. Matzger, Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008)PubMedCrossRef
87.
Zurück zum Zitat Q.-G. Zhai, X. Bu, C. Mao, X. Zhao, P. Feng, Systematic and dramatic tuning on gas sorption performance in heterometallic metal–organic frameworks. J. Am. Chem. Soc. 138(8), 2524–2527 (2016)PubMedCrossRef Q.-G. Zhai, X. Bu, C. Mao, X. Zhao, P. Feng, Systematic and dramatic tuning on gas sorption performance in heterometallic metal–organic frameworks. J. Am. Chem. Soc. 138(8), 2524–2527 (2016)PubMedCrossRef
88.
Zurück zum Zitat X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 183, 69–73 (2014)CrossRef X. Yan, S. Komarneni, Z. Zhang, Z. Yan, Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 183, 69–73 (2014)CrossRef
89.
Zurück zum Zitat E. Garcia-Perez, J. Gascon, V. Morales-Florez, J.M. Castillo, F. Kapteijn, S. Calero, Identification of adsorption sites in Cu-BTC by experimentation and molecular simulation. Langmuir 25, 1725–1731 (2009)PubMedCrossRef E. Garcia-Perez, J. Gascon, V. Morales-Florez, J.M. Castillo, F. Kapteijn, S. Calero, Identification of adsorption sites in Cu-BTC by experimentation and molecular simulation. Langmuir 25, 1725–1731 (2009)PubMedCrossRef
90.
Zurück zum Zitat D. Alezi, A.M.P. Peedikakkal, L.J. Weselinski, V. Guillerm, Y. Belmabkhout, A.J. Cairns, Z. Chen, L. Wojtas, M. Eddaoudi, Quest for highly connected metal-organic framework platforms: Rare earth polynuclear clusters versatility meets net topology needs. J. Am. Chem. Soc. 137, 5421–5430 (2015)PubMedCrossRef D. Alezi, A.M.P. Peedikakkal, L.J. Weselinski, V. Guillerm, Y. Belmabkhout, A.J. Cairns, Z. Chen, L. Wojtas, M. Eddaoudi, Quest for highly connected metal-organic framework platforms: Rare earth polynuclear clusters versatility meets net topology needs. J. Am. Chem. Soc. 137, 5421–5430 (2015)PubMedCrossRef
91.
Zurück zum Zitat D.Q. Yuan, D. Zhao, D.F. Sun, H.C. Zhou, An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Edit. 49, 5357–5361 (2010)CrossRef D.Q. Yuan, D. Zhao, D.F. Sun, H.C. Zhou, An isoreticular series of metal–organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Edit. 49, 5357–5361 (2010)CrossRef
92.
Zurück zum Zitat C.E. Wilmer, O.K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A.A. Sarjeant, R.Q. Snurr, J.T. Hupp, Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013)CrossRef C.E. Wilmer, O.K. Farha, T. Yildirim, I. Eryazici, V. Krungleviciute, A.A. Sarjeant, R.Q. Snurr, J.T. Hupp, Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases. Energy Environ. Sci. 6, 1158–1163 (2013)CrossRef
93.
Zurück zum Zitat B.S. Zheng, J.F. Bai, J.G. Duan, L. Wojtas, M.J. Zaworotko, Enhanced CO2 binding affinity of a high-uptake rht-type metal−organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133(4), 748–751 (2011)PubMedCrossRef B.S. Zheng, J.F. Bai, J.G. Duan, L. Wojtas, M.J. Zaworotko, Enhanced CO2 binding affinity of a high-uptake rht-type metal−organic framework decorated with acylamide groups. J. Am. Chem. Soc. 133(4), 748–751 (2011)PubMedCrossRef
94.
Zurück zum Zitat P.L. Llewellyn, S. Bourrely, C. Serre, A. Vimont, M. Daturi, L. Hamon, G.D. Weireld, J.-S. Chang, D.-Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal–organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008)PubMedCrossRef P.L. Llewellyn, S. Bourrely, C. Serre, A. Vimont, M. Daturi, L. Hamon, G.D. Weireld, J.-S. Chang, D.-Y. Hong, Y.K. Hwang, S.H. Jhung, G. Ferey, High uptakes of CO2 and CH4 in mesoporous metal–organic frameworks MIL-100 and MIL-101. Langmuir 24, 7245–7250 (2008)PubMedCrossRef
95.
Zurück zum Zitat J.A. Botas, G. Calleja, M. Sanchez-Sanchez, M. Gisela Orcajo, Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300–5303 (2010)PubMedCrossRef J.A. Botas, G. Calleja, M. Sanchez-Sanchez, M. Gisela Orcajo, Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties. Langmuir 26, 5300–5303 (2010)PubMedCrossRef
96.
Zurück zum Zitat M. Kim, J.F. Cahill, H. Fei, K.A. Prather, S.M. Cohen, Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 134, 18082–18088 (2012)PubMedCrossRef M. Kim, J.F. Cahill, H. Fei, K.A. Prather, S.M. Cohen, Postsynthetic ligand and cation exchange in robust metal–organic frameworks. J. Am. Chem. Soc. 134, 18082–18088 (2012)PubMedCrossRef
97.
Zurück zum Zitat C.H. Lau, R. Babarao, M.R. Hill, A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chem. Commun. 49, 3634–3636 (2013)CrossRef C.H. Lau, R. Babarao, M.R. Hill, A route to drastic increase of CO2 uptake in Zr metal organic framework UiO-66. Chem. Commun. 49, 3634–3636 (2013)CrossRef
98.
Zurück zum Zitat S.S. Kaye, J.R. Long, Hydrogen storage in the dehydrated Prussian blue analogues M3[co(CN)6]2 (M = Mn, Fe, co, Ni, cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005)PubMedCrossRef S.S. Kaye, J.R. Long, Hydrogen storage in the dehydrated Prussian blue analogues M3[co(CN)6]2 (M = Mn, Fe, co, Ni, cu, Zn). J. Am. Chem. Soc. 127, 6506–6507 (2005)PubMedCrossRef
99.
Zurück zum Zitat Y. Lin, C. Konga, L. Chen, Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Adv. 6, 32598–32614 (2016)CrossRef Y. Lin, C. Konga, L. Chen, Amine-functionalized metal–organic frameworks: Structure, synthesis and applications. RSC Adv. 6, 32598–32614 (2016)CrossRef
100.
Zurück zum Zitat Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. Int. Edit. 47, 4144–4148 (2008)CrossRef Y.K. Hwang, D.Y. Hong, J.S. Chang, S.H. Jhung, Y.K. Seo, J. Kim, A. Vimont, M. Daturi, C. Serre, G. Ferey, Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angew. Chem. Int. Edit. 47, 4144–4148 (2008)CrossRef
101.
Zurück zum Zitat T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine appended Metal−organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012)PubMedCrossRef T.M. McDonald, W.R. Lee, J.A. Mason, B.M. Wiers, C.S. Hong, J.R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine appended Metal−organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012)PubMedCrossRef
102.
Zurück zum Zitat K. Lee, J.D. Howe, L.-C. Lin, B. Smit, J.B. Neaton, Small-molecule adsorption in open-site metal−organic frameworks: A systematic density functional theory study for rational design. Chem. Mater. 27, 668–678 (2015)CrossRef K. Lee, J.D. Howe, L.-C. Lin, B. Smit, J.B. Neaton, Small-molecule adsorption in open-site metal−organic frameworks: A systematic density functional theory study for rational design. Chem. Mater. 27, 668–678 (2015)CrossRef
103.
Zurück zum Zitat J.-S. Qin, D.-Y. Du, W.-L. Li, J.-P. Zhang, S.-L. Li, Z.-M. Su, X.-L. Wang, Q. Xu, K.-Z. Shao, Y.-Q. Lan, N-rich zeolite-like metal–organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114–2118 (2012)CrossRef J.-S. Qin, D.-Y. Du, W.-L. Li, J.-P. Zhang, S.-L. Li, Z.-M. Su, X.-L. Wang, Q. Xu, K.-Z. Shao, Y.-Q. Lan, N-rich zeolite-like metal–organic framework with sodalite topology: High CO2 uptake, selective gas adsorption and efficient drug delivery. Chem. Sci. 3, 2114–2118 (2012)CrossRef
104.
Zurück zum Zitat A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keefee, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)PubMedCrossRef A. Phan, C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O’Keefee, O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010)PubMedCrossRef
105.
Zurück zum Zitat A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27, 6368–6373 (2011)PubMedCrossRef A.C. Kizzie, A.G. Wong-Foy, A.J. Matzger, Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. Langmuir 27, 6368–6373 (2011)PubMedCrossRef
106.
Zurück zum Zitat A.O. Yazaydin, A.I. Benin, S.A. Faheem, P. Jakubczak, J.J. Low, R.R. Willis, R.Q. Snurr, Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009)CrossRef A.O. Yazaydin, A.I. Benin, S.A. Faheem, P. Jakubczak, J.J. Low, R.R. Willis, R.Q. Snurr, Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chem. Mater. 21, 1425–1430 (2009)CrossRef
107.
Zurück zum Zitat V.A. Blatov, D.M. Proserpio, TOPOS 4.0, A program package for multipurpose crystallochemical analysis V.A. Blatov, D.M. Proserpio, TOPOS 4.0, A program package for multipurpose crystallochemical analysis
Metadaten
Titel
Porous Coordination Polymers
verfasst von
Abdul Malik P. Peedikakkal
N. N. Adarsh
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95987-0_5

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.