Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2020

28.05.2020 | Original Research

Positive solutions of nonlocal fractional boundary value problem involving Riemann–Stieltjes integral condition

verfasst von: Faouzi Haddouchi

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we investigate the existence of positive solutions for a nonlocal fractional boundary value problem involving Caputo fractional derivative and nonlocal Riemann–Stieltjes integral boundary condition. By using the spectral analysis of the relevant linear operator and Gelfand’s formula, we obtain an useful upper and lower bounds for the spectral radius. Our discussion is based on the properties of the Green’s function and the fixed point index theory in cones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ahmad, B., Alsaedi, A., Salem, S., Ntouyas, S.K.: Fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann–Stieltjes integral-multi-strip conditions. Fractal Fract. 3(2), 1–16 (2019) Ahmad, B., Alsaedi, A., Salem, S., Ntouyas, S.K.: Fractional differential equation involving mixed nonlinearities with nonlocal multi-point and Riemann–Stieltjes integral-multi-strip conditions. Fractal Fract. 3(2), 1–16 (2019)
2.
Zurück zum Zitat Beleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing Co, Boston (2012) Beleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific Publishing Co, Boston (2012)
3.
Zurück zum Zitat Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389(1), 403–411 (2012)MathSciNetMATH Cabada, A., Wang, G.: Positive solutions of nonlinear fractional differential equations with integral boundary value conditions. J. Math. Anal. Appl. 389(1), 403–411 (2012)MathSciNetMATH
4.
Zurück zum Zitat Caffarelli, L., Vazquez, J.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)MathSciNetMATH Caffarelli, L., Vazquez, J.: Nonlinear porous medium flow with fractional potential pressure. Arch. Ration. Mech. Anal. 202, 537–565 (2011)MathSciNetMATH
5.
Zurück zum Zitat Caputo, S.M.: Free modes splitting and alterations of electro chemically polarizable media. Rend Fis. Accad. Lincei. 4, 89–98 (1993) Caputo, S.M.: Free modes splitting and alterations of electro chemically polarizable media. Rend Fis. Accad. Lincei. 4, 89–98 (1993)
6.
Zurück zum Zitat Das, S., Maharatna, K.: Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der Pol oscillators. Comput. Methods Programs Biomed. 122, 490–507 (2013) Das, S., Maharatna, K.: Fractional dynamical model for the generation of ECG like signals from filtered coupled Van-der Pol oscillators. Comput. Methods Programs Biomed. 122, 490–507 (2013)
7.
Zurück zum Zitat Das, S.: Functional Fractional Calculus for Systems Identification and Controls. Springer, New York (2008)MATH Das, S.: Functional Fractional Calculus for Systems Identification and Controls. Springer, New York (2008)MATH
8.
Zurück zum Zitat Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)MATH Deimling, K.: Nonlinear Functional Analysis. Springer-Verlag, Berlin (1985)MATH
9.
Zurück zum Zitat El-Saka, H.: The fractional-order SIS epidemic model with variable population size. J. Egypt. Math. Soc. 22, 50–54 (2014)MathSciNetMATH El-Saka, H.: The fractional-order SIS epidemic model with variable population size. J. Egypt. Math. Soc. 22, 50–54 (2014)MathSciNetMATH
10.
Zurück zum Zitat Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press Inc, New York (1988)MATH Guo, D., Lakshmikantham, V.: Nonlinear Problems in Abstract Cones. Academic Press Inc, New York (1988)MATH
11.
Zurück zum Zitat Hao, X., Liu, L., Wu, Y., Sun, Q.: Positive solutions for nonlinear \(n\)th-order singular eigenvalue problem with nonlocal conditions. Nonlinear Anal. 73(6), 1653–1662 (2010)MathSciNetMATH Hao, X., Liu, L., Wu, Y., Sun, Q.: Positive solutions for nonlinear \(n\)th-order singular eigenvalue problem with nonlocal conditions. Nonlinear Anal. 73(6), 1653–1662 (2010)MathSciNetMATH
12.
Zurück zum Zitat Hartley, T., Lorenzo, C., Qammer, H.: Chaos in fractional order Chua’s system. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 42(8), 485–490 (1995) Hartley, T., Lorenzo, C., Qammer, H.: Chaos in fractional order Chua’s system. IEEE Trans. Circuits Syst. I. Fundam. Theory Appl. 42(8), 485–490 (1995)
13.
Zurück zum Zitat Hao, X., Wang, H.: Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 16(1), 581–596 (2018)MathSciNetMATH Hao, X., Wang, H.: Positive solutions of semipositone singular fractional differential systems with a parameter and integral boundary conditions. Open Math. 16(1), 581–596 (2018)MathSciNetMATH
14.
Zurück zum Zitat Ivancevic, V.G., Ivancevic, T.T.: Geometrical Dynamics of Complex Systems: A Unified Modelling Approach to Physics, Control, Biomechanics, Neurodynamics and Psycho–Socio–Economical Dynamics. Springer, Berlin (2006)MATH Ivancevic, V.G., Ivancevic, T.T.: Geometrical Dynamics of Complex Systems: A Unified Modelling Approach to Physics, Control, Biomechanics, Neurodynamics and Psycho–Socio–Economical Dynamics. Springer, Berlin (2006)MATH
15.
Zurück zum Zitat Jankowski, T.: Positive solutions to fractional differential equations involving Stieltjes integral conditions. Appl. Math. Comput. 241, 200–213 (2014)MathSciNetMATH Jankowski, T.: Positive solutions to fractional differential equations involving Stieltjes integral conditions. Appl. Math. Comput. 241, 200–213 (2014)MathSciNetMATH
16.
Zurück zum Zitat Jankowski, T.: Positive solutions to second-order differential equations with the dependence on the first order derivative and nonlocal boundary conditions. Bound. Value Probl. 8, 21 (2013)MathSciNetMATH Jankowski, T.: Positive solutions to second-order differential equations with the dependence on the first order derivative and nonlocal boundary conditions. Bound. Value Probl. 8, 21 (2013)MathSciNetMATH
17.
Zurück zum Zitat Jia, M., Li, L., Liu, X., Song, J., Bai, Z.: A class of nonlocal problems of fractional differential equations with composition of derivative and parameters. Adv. Differ. Equ. 280, 26 (2019)MathSciNet Jia, M., Li, L., Liu, X., Song, J., Bai, Z.: A class of nonlocal problems of fractional differential equations with composition of derivative and parameters. Adv. Differ. Equ. 280, 26 (2019)MathSciNet
18.
Zurück zum Zitat Jiang, J., Liu, L., Wu, Y.: Positive solutions for nonlinear fractional differential equations with boundary conditions involving Riemann-Stieltjes integrals. Abstr. Appl. Anal. 2012, Article ID 708192 (21 pp) (2012)MathSciNetMATH Jiang, J., Liu, L., Wu, Y.: Positive solutions for nonlinear fractional differential equations with boundary conditions involving Riemann-Stieltjes integrals. Abstr. Appl. Anal. 2012, Article ID 708192 (21 pp) (2012)MathSciNetMATH
19.
Zurück zum Zitat Jiang, J., Liu, W., Wang, H.: Positive solutions for higher order nonlocal fractional differential equation with integral boundary conditions. J. Funct. Spaces. 2018, Article ID 6598351 (12 pp) (2018)MathSciNetMATH Jiang, J., Liu, W., Wang, H.: Positive solutions for higher order nonlocal fractional differential equation with integral boundary conditions. J. Funct. Spaces. 2018, Article ID 6598351 (12 pp) (2018)MathSciNetMATH
20.
Zurück zum Zitat Kaihong, Z., Ping, G.: Positive solutions of Riemann–Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential. Adv. Differ. Equ. 254, 18 (2014)MathSciNetMATH Kaihong, Z., Ping, G.: Positive solutions of Riemann–Stieltjes integral boundary problems for the nonlinear coupling system involving fractional-order differential. Adv. Differ. Equ. 254, 18 (2014)MathSciNetMATH
21.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
22.
Zurück zum Zitat Kossowski, I., Szymańska-Dȩbowska, K.: Solutions to resonant boundary value problem with boundary conditions involving Riemann–Stieltjes integrals. Discrete Contin. Dyn. Syst. Ser. B. 23(1), 275–281 (2018)MathSciNetMATH Kossowski, I., Szymańska-Dȩbowska, K.: Solutions to resonant boundary value problem with boundary conditions involving Riemann–Stieltjes integrals. Discrete Contin. Dyn. Syst. Ser. B. 23(1), 275–281 (2018)MathSciNetMATH
23.
Zurück zum Zitat Lv, T., Pang, H., Cao, L.: Existence results for fractional differential equations with multistrip Riemann–Stieltjes integral boundary conditions. Discrete Dyn. Nat. Soc. 2018, Article ID 2352789 (8 pp) (2018)MathSciNetMATH Lv, T., Pang, H., Cao, L.: Existence results for fractional differential equations with multistrip Riemann–Stieltjes integral boundary conditions. Discrete Dyn. Nat. Soc. 2018, Article ID 2352789 (8 pp) (2018)MathSciNetMATH
24.
Zurück zum Zitat Mongiovi, M.S., Zingales, M.: A non-local model of thermal energy transport: The fractional temperature equation. Int. J. Heat Mass Transf. 67, 593–601 (2013) Mongiovi, M.S., Zingales, M.: A non-local model of thermal energy transport: The fractional temperature equation. Int. J. Heat Mass Transf. 67, 593–601 (2013)
25.
Zurück zum Zitat Padhi, S., Graef, J.R., Pati, S.: Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann–Stieltjes integral boundary conditions. Fract. Calc. Appl. Anal. 21(3), 716–745 (2018)MathSciNetMATH Padhi, S., Graef, J.R., Pati, S.: Multiple positive solutions for a boundary value problem with nonlinear nonlocal Riemann–Stieltjes integral boundary conditions. Fract. Calc. Appl. Anal. 21(3), 716–745 (2018)MathSciNetMATH
26.
Zurück zum Zitat Paola, M., Pinnola, F., Zingales, M.: Fractional differential equations and related exact mechanical models. Comput. Math. Appl. 66, 608–620 (2013)MathSciNetMATH Paola, M., Pinnola, F., Zingales, M.: Fractional differential equations and related exact mechanical models. Comput. Math. Appl. 66, 608–620 (2013)MathSciNetMATH
27.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering. Academic Press, London (1999)MATH Podlubny, I.: Fractional Differential Equations. Mathematics in Sciences and Engineering. Academic Press, London (1999)MATH
28.
Zurück zum Zitat Ren, T., Li, S., Zhang, X., Liu, L.: Maximum and minimum solutions for a nonlocal \(p\)-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 118, 15 (2017)MathSciNetMATH Ren, T., Li, S., Zhang, X., Liu, L.: Maximum and minimum solutions for a nonlocal \(p\)-Laplacian fractional differential system from eco-economical processes. Bound. Value Probl. 118, 15 (2017)MathSciNetMATH
29.
Zurück zum Zitat Sabatier, J., Agarwal, O.P., Machado, J.A.T.: Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007) Sabatier, J., Agarwal, O.P., Machado, J.A.T.: Advances in Fractional Calculus. Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)
30.
Zurück zum Zitat Song, Q., Bai, Z.: Positive solutions of fractional differential equations involving the Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 183, 7 (2018)MathSciNetMATH Song, Q., Bai, Z.: Positive solutions of fractional differential equations involving the Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 183, 7 (2018)MathSciNetMATH
31.
Zurück zum Zitat Srivastava, H.M., El-Sayed, A.M.A., Gaafar, F.M.: A class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the Riemann–Stieltjes functional integral and infinite-point boundary conditions. Symmetry-Basel 10(10), 1–13 (2018) Srivastava, H.M., El-Sayed, A.M.A., Gaafar, F.M.: A class of nonlinear boundary value problems for an arbitrary fractional-order differential equation with the Riemann–Stieltjes functional integral and infinite-point boundary conditions. Symmetry-Basel 10(10), 1–13 (2018)
32.
Zurück zum Zitat Szymańska-Dȩbowska, K., Zima, M.: A topological degree approach to a nonlocal Neumann problem for a system at resonance. J. Fixed Point Theory Appl. 21(2), Article ID 67 (14 pp) (2019)MathSciNetMATH Szymańska-Dȩbowska, K., Zima, M.: A topological degree approach to a nonlocal Neumann problem for a system at resonance. J. Fixed Point Theory Appl. 21(2), Article ID 67 (14 pp) (2019)MathSciNetMATH
33.
Zurück zum Zitat Tan, J.: Positive solutions of singular fractional order differential system with Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 293, 12 (2016)MathSciNetMATH Tan, J.: Positive solutions of singular fractional order differential system with Riemann–Stieltjes integral boundary condition. Adv. Differ. Equ. 293, 12 (2016)MathSciNetMATH
34.
Zurück zum Zitat Tarasov, V.: Lattice model of fractional gradient and integral elasticity: Long-range interaction of Grünwald-Letnikov-Riesz type. Mech. Mater. 70, 106–114 (2014) Tarasov, V.: Lattice model of fractional gradient and integral elasticity: Long-range interaction of Grünwald-Letnikov-Riesz type. Mech. Mater. 70, 106–114 (2014)
35.
Zurück zum Zitat Wang, H., Jiang, J.: Multiple positive solutions to singular fractional differential equations with integral boundary conditions involving \(p-q\)-order derivatives. Adv. Differ. Equ. 2020, Paper No. 2, (13 pp) (2020)MathSciNet Wang, H., Jiang, J.: Multiple positive solutions to singular fractional differential equations with integral boundary conditions involving \(p-q\)-order derivatives. Adv. Differ. Equ. 2020, Paper No. 2, (13 pp) (2020)MathSciNet
36.
Zurück zum Zitat Wang, Y.: Positive solutions for fractional differential equation involving the Riemann–Stieltjes integral conditions with two parameters. J. Nonlinear Sci. Appl. 9(11), 5733–5740 (2016)MathSciNetMATH Wang, Y.: Positive solutions for fractional differential equation involving the Riemann–Stieltjes integral conditions with two parameters. J. Nonlinear Sci. Appl. 9(11), 5733–5740 (2016)MathSciNetMATH
37.
Zurück zum Zitat Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74(11), 3599–3605 (2011)MathSciNetMATH Wang, Y., Liu, L., Wu, Y.: Positive solutions for a nonlocal fractional differential equation. Nonlinear Anal. 74(11), 3599–3605 (2011)MathSciNetMATH
38.
Zurück zum Zitat Yin, D., Duan, X., Zhou, X.: Fractional time-dependent deformation component models for characterizing viscoelastic Poisson’s ratio. Eur. J. Mech. A Solids 42, 422–429 (2013) Yin, D., Duan, X., Zhou, X.: Fractional time-dependent deformation component models for characterizing viscoelastic Poisson’s ratio. Eur. J. Mech. A Solids 42, 422–429 (2013)
39.
Zurück zum Zitat Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252–263 (2015)MathSciNetMATH Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: The spectral analysis for a singular fractional differential equation with a signed measure. Appl. Math. Comput. 257, 252–263 (2015)MathSciNetMATH
40.
Zurück zum Zitat Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)MathSciNetMATH Zhang, X., Liu, L., Wu, Y.: The uniqueness of positive solution for a fractional order model of turbulent flow in a porous medium. Appl. Math. Lett. 37, 26–33 (2014)MathSciNetMATH
41.
Zurück zum Zitat Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)MathSciNetMATH Zhang, X., Liu, L., Wu, Y., Wiwatanapataphee, B.: Nontrivial solutions for a fractional advection dispersion equation in anomalous diffusion. Appl. Math. Lett. 66, 1–8 (2017)MathSciNetMATH
42.
Zurück zum Zitat Zhang, X., Liu, X., Jia, M., Chen, H.: The positive solutions of fractional differential equation with Riemann–Stieltjes integral boundary conditions. Filomat 32(7), 2383–2394 (2018)MathSciNet Zhang, X., Liu, X., Jia, M., Chen, H.: The positive solutions of fractional differential equation with Riemann–Stieltjes integral boundary conditions. Filomat 32(7), 2383–2394 (2018)MathSciNet
43.
Zurück zum Zitat Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)MathSciNetMATH Zhang, X., Mao, C., Liu, L., Wu, Y.: Exact iterative solution for an abstract fractional dynamic system model for bioprocess. Qual. Theory Dyn. Syst. 16, 205–222 (2017)MathSciNetMATH
44.
Zurück zum Zitat Zou, Y.: On the existence of positive solutions for a fourth-order boundary value problem. J. Funct. Spaces. 2017, Article ID 4946198 (5 pp) (2017)MATH Zou, Y.: On the existence of positive solutions for a fourth-order boundary value problem. J. Funct. Spaces. 2017, Article ID 4946198 (5 pp) (2017)MATH
Metadaten
Titel
Positive solutions of nonlocal fractional boundary value problem involving Riemann–Stieltjes integral condition
verfasst von
Faouzi Haddouchi
Publikationsdatum
28.05.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2020
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01365-0

Weitere Artikel der Ausgabe 1-2/2020

Journal of Applied Mathematics and Computing 1-2/2020 Zur Ausgabe