Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

11.08.2018

Positivity Limiters for Filtered Spectral Approximations of Linear Kinetic Transport Equations

verfasst von: M. Paul Laiu, Cory D. Hauck

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We analyze the properties and compare the performance of several positivity limiters for spectral approximations with respect to the angular variable of linear transport equations. It is well-known that spectral methods suffer from the occurrence of (unphysical) negative spatial particle concentrations due to the fact that the underlying polynomial approximations are not always positive at the kinetic level. Positivity limiters address this defect by enforcing positivity of the polynomial approximation on a finite set of preselected points. With a proper PDE solver, they ensure positivity of the particle concentration at each step in a time integration scheme. We review several known positivity limiters proposed in other contexts and also introduce a modification for one of them. We give error estimates for the consistency of the positive approximations produced by these limiters and compare the theoretical estimates to numerical results. We then solve two benchmark problems with these limiters, make qualitative and quantitative observations about the solutions, and then compare the efficiency of the different limiters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
In this paper, the term “concentration” refers the integral of the kinetic distribution over the momentum/angular space. The concentration is a function of position and time only.
 
2
In general, \(n = (N+1)^2\); however, in reduced geometries, the components of \(\mathbf {m}\) are not all linearly independent. In such cases, n will be smaller.
 
3
Note that \(\mathbf {m}\) depends on N and could be denoted as \(\mathbf {m}_N\). We suppress this notation here for the sake of simplicity.
 
4
See, for example, [15, 42] for the detailed formulation of the FP\(_N\) equations.
 
5
Note that the results presented in this section only focus on the consistency properties of the limiters. A full convergence analysis for the P\(_N\) and FP\(_N\) equations with limiters is in the scope of future work.
 
6
Here we define the Sobolev spaces on \([-1,1]\) in (19) using weak derivatives and space interpolations as in [8, 41]. It is known that the Sobolev–Slobodeckij spaces used in [5] are equivalent to (19). On the other hand, we define the Sobolev spaces on \(\mathbb {S}^2\) in (20) via expansion coefficients as in [12, 20]. In [20, Section 8.1], it is shown that (20) is equivalent to a norm based on weak derivatives and space interpolations on \(\mathbb {S}^2\). We choose to use the form in (20) for simplicity.
 
7
Here, for \(q\in \mathbb {N}{\setminus }\{0\}\), \(C^q(\mathcal {S})\) is the space of functions with a continuous qth derivative on \(\mathcal {S}\). For \(q\ge 0\), \(C^q(\mathcal {S})\) is defined by norms given in [25, Eq. (4.3)–(4.4)]. See also [12, 36] for further details.
 
8
This is primarily due to the fact that, on \(\mathbb {S}^2\), more points are required for quadratures to achieve precision \(2N+1\). This means that there is generally no polynomial interpolant of \(\varphi \) in \(\mathbb {P}_N\), thus the second equality in (31) does not hold on \(\mathbb {S}^2\).
 
9
For general problems, it may not be possible to take advantage of symmetries.
 
10
It is reported in [25] that the computational time of the opt limiter can be reduced by about 30% with the tensor product quadrature replaced by the Lebedev quadrature [26]. However, the implementation of the opt limiter is still relatively expensive even with such improvement.
 
11
Note that the negative particle concentrations are colored in white.
 
12
Similar results are obtained for the \(L^1\) and \(L^\infty \) spatial errors.
 
13
The time step \(\varDelta t\) is also refined in such a way that the ratio \(\varDelta t/h\) stays fixed.
 
Literatur
1.
Zurück zum Zitat Alldredge, G.W., Hauck, C.D., Tits, A.L.: High-order entropy-based closures for linear transport in slab geometry II: a computational study of the optimization problem. SIAM J. Sci. Comput. 34(4), B361–B391 (2012)MathSciNetCrossRefMATH Alldredge, G.W., Hauck, C.D., Tits, A.L.: High-order entropy-based closures for linear transport in slab geometry II: a computational study of the optimization problem. SIAM J. Sci. Comput. 34(4), B361–B391 (2012)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer, Berlin (2012)CrossRefMATH Atkinson, K., Han, W.: Spherical Harmonics and Approximations on the Unit Sphere: An Introduction. Springer, Berlin (2012)CrossRefMATH
4.
Zurück zum Zitat Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1976)CrossRefMATH Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (1976)CrossRefMATH
6.
Zurück zum Zitat Brunner, T.A.: Forms of approximate radiation transport. Technical Report SAND2002-1778, Sandia National Laboratories (2002) Brunner, T.A.: Forms of approximate radiation transport. Technical Report SAND2002-1778, Sandia National Laboratories (2002)
7.
Zurück zum Zitat Brunner, T.A., Holloway, J.P.: Two-dimensional time-dependent Riemann solvers for neutron transport. J. Comput. Phys. 210, 386–399 (2005)MathSciNetCrossRefMATH Brunner, T.A., Holloway, J.P.: Two-dimensional time-dependent Riemann solvers for neutron transport. J. Comput. Phys. 210, 386–399 (2005)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(157), 67–86 (1982)MathSciNetCrossRefMATH Canuto, C., Quarteroni, A.: Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38(157), 67–86 (1982)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Case, K., Zweifel, P.: Linear Transport Theory. Addison-Wesley, Reading, MA (1967)MATH Case, K., Zweifel, P.: Linear Transport Theory. Addison-Wesley, Reading, MA (1967)MATH
10.
Zurück zum Zitat Cercignani, C.: The Boltzmann Equation and its Applications, Applied Mathematical Sciences, vol. 67. Springer, New York (1988)CrossRefMATH Cercignani, C.: The Boltzmann Equation and its Applications, Applied Mathematical Sciences, vol. 67. Springer, New York (1988)CrossRefMATH
11.
Zurück zum Zitat Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, vol. 106. Springer, New York (1994)CrossRefMATH Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Dilute Gases, Applied Mathematical Sciences, vol. 106. Springer, New York (1994)CrossRefMATH
13.
Zurück zum Zitat Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, Volume 6: Evolution Problems II. Spinger, Berlin (2000)CrossRefMATH Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, Volume 6: Evolution Problems II. Spinger, Berlin (2000)CrossRefMATH
14.
Zurück zum Zitat Deshpande, S.M.: Kinetic theory based new upwind methods for inviscid compressible flows. In: American Institute of Aeronautics and Astronautics, New York (1986). Paper 86-0275 Deshpande, S.M.: Kinetic theory based new upwind methods for inviscid compressible flows. In: American Institute of Aeronautics and Astronautics, New York (1986). Paper 86-0275
15.
Zurück zum Zitat Frank, M., Hauck, C., Küpper, K.: Convergence of filtered spherical harmonic equations for radiation transport. Commun. Math. Sci. 14(5), 1443–1465 (2016)MathSciNetCrossRefMATH Frank, M., Hauck, C., Küpper, K.: Convergence of filtered spherical harmonic equations for radiation transport. Commun. Math. Sci. 14(5), 1443–1465 (2016)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Ganapol, B.D.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Technical report, Los Alamos National Laboratory (1999) Ganapol, B.D.: Homogeneous infinite media time-dependent analytic benchmarks for X-TM transport methods development. Technical report, Los Alamos National Laboratory (1999)
17.
Zurück zum Zitat Garrett, C.K., Hauck, C.D.: A comparison of moment closures for linear kinetic transport equations: the line source benchmark. Transp. Theory Stat. Phys. 42, 203–235 (2013)CrossRefMATH Garrett, C.K., Hauck, C.D.: A comparison of moment closures for linear kinetic transport equations: the line source benchmark. Transp. Theory Stat. Phys. 42, 203–235 (2013)CrossRefMATH
19.
Zurück zum Zitat Gottlieb, D., Gottlieb, S., Hesthaven, J.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, New York (2007)MATH Gottlieb, D., Gottlieb, S., Hesthaven, J.: Spectral Methods for Time-Dependent Problems. Cambridge University Press, New York (2007)MATH
20.
21.
Zurück zum Zitat Harten, A., Lax, P.D., Leer, V.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)MathSciNetCrossRefMATH Harten, A., Lax, P.D., Leer, V.: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev. 25, 35–61 (1983)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Laiu, M.P.: Positive filtered P\(_n\) method for linear transport equations and the associated optimization algorithm. Ph.D. thesis, University of Maryland, College Park (2016) Laiu, M.P.: Positive filtered P\(_n\) method for linear transport equations and the associated optimization algorithm. Ph.D. thesis, University of Maryland, College Park (2016)
25.
Zurück zum Zitat Laiu, M.P., Hauck, C.D., McClarren, R.G., O’Leary, D.P., Tits, A.L.: Positive filtered P\(_{N}\) moment closures for linear kinetic equations. SIAM J. Numer. Anal. 54(6), 3214–3238 (2016)MathSciNetCrossRefMATH Laiu, M.P., Hauck, C.D., McClarren, R.G., O’Leary, D.P., Tits, A.L.: Positive filtered P\(_{N}\) moment closures for linear kinetic equations. SIAM J. Numer. Anal. 54(6), 3214–3238 (2016)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Lewis, E.E., Miller, W.F.J.: Computational Methods in Neutron Transport. Wiley, New York (1984) Lewis, E.E., Miller, W.F.J.: Computational Methods in Neutron Transport. Wiley, New York (1984)
30.
Zurück zum Zitat Liu, X.D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33(2), 760–779 (1996)MathSciNetCrossRefMATH Liu, X.D., Osher, S.: Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I. SIAM J. Numer. Anal. 33(2), 760–779 (1996)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990)CrossRefMATH Markowich, P.A., Ringhofer, C.A., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990)CrossRefMATH
35.
Zurück zum Zitat McClarren, R.G., Holloway, J.P., Brunner, T.A.: On solutions to the \({P_N}\) equations for thermal radiative transfer. J. Comput. Phys. 227(5), 2864–2885 (2008)MathSciNetCrossRefMATH McClarren, R.G., Holloway, J.P., Brunner, T.A.: On solutions to the \({P_N}\) equations for thermal radiative transfer. J. Comput. Phys. 227(5), 2864–2885 (2008)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetCrossRefMATH Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27(6), 1405–1421 (1990)MathSciNetCrossRefMATH Perthame, B.: Boltzmann type schemes for gas dynamics and the entropy property. SIAM J. Numer. Anal. 27(6), 1405–1421 (1990)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Pomraning, G.C.: Radiation Hydrodynamics. Pergamon Press, New York (1973) Pomraning, G.C.: Radiation Hydrodynamics. Pergamon Press, New York (1973)
44.
Zurück zum Zitat Walters, W.: Use of the Chebyshev–Legendre quadrature set in discrete-ordinate codes. Technical report, LA-UR-87-3621, Los Alamos National Laboratory (1987) Walters, W.: Use of the Chebyshev–Legendre quadrature set in discrete-ordinate codes. Technical report, LA-UR-87-3621, Los Alamos National Laboratory (1987)
Metadaten
Titel
Positivity Limiters for Filtered Spectral Approximations of Linear Kinetic Transport Equations
verfasst von
M. Paul Laiu
Cory D. Hauck
Publikationsdatum
11.08.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0790-y

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe