Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

24.07.2018

Discontinuous Galerkin Methods with Optimal \(L^2\) Accuracy for One Dimensional Linear PDEs with High Order Spatial Derivatives

verfasst von: Pei Fu, Yingda Cheng, Fengyan Li, Yan Xu

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we formulate and analyze discontinuous Galerkin (DG) methods to solve several partial differential equations (PDEs) with high order spatial derivatives, including the heat equation, a third order wave equation, a fourth order equation and the linear Schrödinger equation in one dimension. Following the idea of local DG methods, we first rewrite each PDE into its first order form and then apply a general DG formulation. The numerical fluxes are introduced as linear combinations of average values of fluxes, and jumps of the solution as well as the auxiliary variables at cell interfaces. The main focus of the present work is to identify a sub-family of the numerical fluxes by choosing the coefficients in the linear combinations, so the solution and some auxiliary variables of the proposed DG methods are optimally accurate in the \(L^2\) norm. In our analysis, one key component is to design some special projection operator(s), tailored for each choice of numerical fluxes in the sub-family, to eliminate those terms at cell interfaces that would otherwise contribute to the sub-optimality of the error estimates. Our theoretical findings are validated by a set of numerical examples.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)MathSciNetMATHCrossRef Bassi, F., Rebay, S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279 (1997)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Baumann, C.E., Oden, J.T.: A discontinuous \(hp\) finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)MathSciNetMATHCrossRef Baumann, C.E., Oden, J.T.: A discontinuous \(hp\) finite element method for convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 175(3–4), 311–341 (1999)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 272(1220), 47–78 (1972)MathSciNetMATHCrossRef Benjamin, T.B., Bona, J.L., Mahony, J.J.: Model equations for long waves in nonlinear dispersive systems. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 272(1220), 47–78 (1972)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Bialynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20(3–4), 539 (1979)MATHCrossRef Bialynicki-Birula, I., Mycielski, J.: Gaussons: solitons of the logarithmic Schrödinger equation. Phys. Scr. 20(3–4), 539 (1979)MATHCrossRef
5.
Zurück zum Zitat Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)MathSciNetMATHCrossRef Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin methods for the generalized Korteweg-de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2002)MathSciNetMATHCrossRef Castillo, P., Cockburn, B., Schötzau, D., Schwab, C.: Optimal a priori error estimates for the \(hp\)-version of the local discontinuous Galerkin method for convection-diffusion problems. Math. Comput. 71(238), 455–478 (2002)MathSciNetMATHCrossRef
7.
Zurück zum Zitat Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36(4), 1570–1598 (2016)MathSciNetMATHCrossRef Chen, Y., Cockburn, B., Dong, B.: A new discontinuous Galerkin method, conserving the discrete \(H^2\)-norm, for third-order linear equations in one space dimension. IMA J. Numer. Anal. 36(4), 1570–1598 (2016)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85(302), 2715–2742 (2016)MathSciNetMATHCrossRef Chen, Y., Cockburn, B., Dong, B.: Superconvergent HDG methods for linear, stationary, third-order equations in one-space dimension. Math. Comput. 85(302), 2715–2742 (2016)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Cheng, Y., Chou, C.-S., Li, F., Xing, Y.: \(L^{2}\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86(303), 121–155 (2017)MATHMathSciNetCrossRef Cheng, Y., Chou, C.-S., Li, F., Xing, Y.: \(L^{2}\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86(303), 121–155 (2017)MATHMathSciNetCrossRef
10.
Zurück zum Zitat Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)MathSciNetMATHCrossRef Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetMATHCrossRef Cockburn, B., Gopalakrishnan, J., Lazarov, R.: Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J. Numer. Anal. 47(2), 1319–1365 (2009)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH
13.
Zurück zum Zitat Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetMATHCrossRef Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH
15.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25(3), 337–361 (1991)MATHMathSciNetCrossRef Cockburn, B., Shu, C.-W.: The Runge-Kutta local projection \(P^1\)-discontinuous-Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25(3), 337–361 (1991)MATHMathSciNetCrossRef
16.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetMATHCrossRef Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetMATHCrossRef Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Cowan, S., Enns, R., Rangnekar, S., Sanghera, S.S.: Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation. Can. J. Phys. 64(3), 311–315 (1986)CrossRef Cowan, S., Enns, R., Rangnekar, S., Sanghera, S.S.: Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation. Can. J. Phys. 64(3), 311–315 (1986)CrossRef
19.
Zurück zum Zitat Dong, B.: Optimally convergent HDG method for third-order Korteweg-de Vries type equations. J. Sci. Comput. 73(2–3), 712–735 (2017)MathSciNetMATHCrossRef Dong, B.: Optimally convergent HDG method for third-order Korteweg-de Vries type equations. J. Sci. Comput. 73(2–3), 712–735 (2017)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47(5), 3240–3268 (2009)MathSciNetMATHCrossRef Dong, B., Shu, C.-W.: Analysis of a local discontinuous Galerkin method for linear time-dependent fourth-order problems. SIAM J. Numer. Anal. 47(5), 3240–3268 (2009)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences, pp. 207–216. Springer, Berlin, Heidelberg (1976)CrossRef Douglas, J., Dupont, T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences, pp. 207–216. Springer, Berlin, Heidelberg (1976)CrossRef
22.
Zurück zum Zitat Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)MathSciNetMATHCrossRef Dutt, A., Greengard, L., Rokhlin, V.: Spectral deferred correction methods for ordinary differential equations. BIT Numer. Math. 40(2), 241–266 (2000)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Ji, L., Xu, Y.: Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8(2), 252–283 (2011)MathSciNetMATH Ji, L., Xu, Y.: Optimal error estimates of the local discontinuous Galerkin method for Willmore flow of graphs on Cartesian meshes. Int. J. Numer. Anal. Model. 8(2), 252–283 (2011)MathSciNetMATH
24.
Zurück zum Zitat Li, B.Q.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer, London (2006)MATH Li, B.Q.: Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer. Springer, London (2006)MATH
25.
Zurück zum Zitat Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Nume. Anal. 47(1), 675–698 (2008)MathSciNetMATHCrossRef Liu, H., Yan, J.: The direct discontinuous Galerkin (DDG) methods for diffusion problems. SIAM J. Nume. Anal. 47(1), 675–698 (2008)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973) Reed, W.H., Hill, T.R.: Triangular mesh methods for the neutron transport equation. Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973)
27.
Zurück zum Zitat Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical solutions of partial differential equations, pp. 149–201. Birkhäuser, Basel (2009) Shu, C.-W.: Discontinuous Galerkin methods: general approach and stability. In: Bertoluzza, S., Falletta, S., Russo, G., Shu, C.-W. (eds.) Numerical solutions of partial differential equations, pp. 149–201. Birkhäuser, Basel (2009)
28.
Zurück zum Zitat Xia, Y., Xu, Y., Shu, C.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Seri. B 8(3), 677 (2007)MathSciNetMATHCrossRef Xia, Y., Xu, Y., Shu, C.: Efficient time discretization for local discontinuous Galerkin methods. Discrete Contin. Dyn. Syst. Seri. B 8(3), 677 (2007)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)MathSciNetMATHCrossRef Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)MathSciNetMATHCrossRef Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)MathSciNetMATHCrossRef Yan, J., Shu, C.-W.: A local discontinuous Galerkin method for KdV type equations. SIAM J. Numer. Anal. 40(2), 769–791 (2002)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1–4), 27–47 (2002)MathSciNetMATHCrossRef Yan, J., Shu, C.-W.: Local discontinuous Galerkin methods for partial differential equations with higher order derivatives. J. Sci. Comput. 17(1–4), 27–47 (2002)MathSciNetMATHCrossRef
Metadaten
Titel
Discontinuous Galerkin Methods with Optimal Accuracy for One Dimensional Linear PDEs with High Order Spatial Derivatives
verfasst von
Pei Fu
Yingda Cheng
Fengyan Li
Yan Xu
Publikationsdatum
24.07.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0788-5

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe