Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

19.07.2018

High-Frequency Asymptotic Compression of Dense BEM Matrices for General Geometries Without Ray Tracing

verfasst von: Daan Huybrechs, Peter Opsomer

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wave propagation and scattering problems in acoustics are often solved with boundary element methods. They lead to a discretization matrix that is typically dense and large: its size and condition number grow with increasing frequency. Yet, high frequency scattering problems are intrinsically local in nature, which is well represented by highly localized rays bouncing around. Asymptotic methods can be used to reduce the size of the linear system, even making it frequency independent, by explicitly extracting the oscillatory properties from the solution using ray tracing or analogous techniques. However, ray tracing becomes expensive or even intractable in the presence of (multiple) scattering obstacles with complicated geometries. In this paper, we start from the same discretization that constructs the fully resolved large and dense matrix, and achieve asymptotic compression by explicitly localizing the Green’s function instead. This results in a large but sparse matrix, with a faster associated matrix-vector product and, as numerical experiments indicate, a much improved condition number. Though an appropriate localisation of the Green’s function also depends on asymptotic information unavailable for general geometries, we can construct it adaptively in a frequency sweep from small to large frequencies in a way which automatically takes into account a general incident wave. We show that the approach is robust with respect to non-convex, multiple and even near-trapping domains, though the compression rate is clearly lower in the latter case. Furthermore, in spite of its asymptotic nature, the method is robust with respect to low-order discretizations such as piecewise constants, linears or cubics, commonly used in applications. On the other hand, we do not decrease the total number of degrees of freedom compared to a conventional classical discretization. The combination of the sparsifying modification of the Green’s function with other accelerating schemes, such as the fast multipole method, appears possible in principle and is a future research topic.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alouges, F., Aussal, M.: The sparse cardinal sine decomposition and its application for fast numerical convolution. Numer. Algorithms 70, 427–448 (2015)MathSciNetCrossRefMATH Alouges, F., Aussal, M.: The sparse cardinal sine decomposition and its application for fast numerical convolution. Numer. Algorithms 70, 427–448 (2015)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. II: the three-dimensional scalar case. Numer. Math. 114, 373–427 (2010)MathSciNetCrossRefMATH Anand, A., Boubendir, Y., Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. II: the three-dimensional scalar case. Numer. Math. 114, 373–427 (2010)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Asheim, A., Huybrechs, D.: Extraction of uniformly accurate phase functions across smooth shadow boundaries in high frequency scattering problems. SIAM J. Appl. Math. 74(2), 454–476 (2014)MathSciNetCrossRefMATH Asheim, A., Huybrechs, D.: Extraction of uniformly accurate phase functions across smooth shadow boundaries in high frequency scattering problems. SIAM J. Appl. Math. 74(2), 454–476 (2014)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Babich, V.M., Buldyrev, V.S.: Short-Wavelength Diffraction Theory. Springer, Berlin (1991)CrossRef Babich, V.M., Buldyrev, V.S.: Short-Wavelength Diffraction Theory. Springer, Berlin (1991)CrossRef
6.
Zurück zum Zitat Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover Publications Inc, Mineola (1986)MATH Bleistein, N., Handelsman, R.A.: Asymptotic Expansions of Integrals. Dover Publications Inc, Mineola (1986)MATH
7.
Zurück zum Zitat Brakhage, H., Werner, P.: Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965)MathSciNetCrossRefMATH Brakhage, H., Werner, P.: Über das Dirichletsche Außenraumproblem für die Helmholtzsche Schwingungsgleichung. Arch. Math. 16, 325–329 (1965)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Bruno, O., Geuzaine, C., Monro, J.J., Reitich, F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. A 362, 629–645 (2004)MathSciNetCrossRefMATH Bruno, O., Geuzaine, C., Monro, J.J., Reitich, F.: Prescribed error tolerances within fixed computational times for scattering problems of arbitrarily high frequency: the convex case. Philos. Trans. R. Soc. Lond. A 362, 629–645 (2004)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Beylkin, G., Kurcz, C., Monzón, L.: Fast algorithms for Helmholtz Green’s functions. Proc. R. Soc. Ser. A 464, 3301–3326 (2008)MathSciNetCrossRefMATH Beylkin, G., Kurcz, C., Monzón, L.: Fast algorithms for Helmholtz Green’s functions. Proc. R. Soc. Ser. A 464, 3301–3326 (2008)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Chandler-Wilde, S., Graham, I., Langdon, S., Spence, E.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)MathSciNetCrossRefMATH Chandler-Wilde, S., Graham, I., Langdon, S., Spence, E.: Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numer. 21, 89–305 (2012)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Chandler-Wilde, S.N., Hewett, D.P., Langdon, S., Twigger, A.: A high frequency boundary element method for scattering by a class of nonconvex obstacles. Numer. Math. 129(4), 647–689 (2015)MathSciNetCrossRefMATH Chandler-Wilde, S.N., Hewett, D.P., Langdon, S., Twigger, A.: A high frequency boundary element method for scattering by a class of nonconvex obstacles. Numer. Math. 129(4), 647–689 (2015)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cheng, H., Crutchfield, W.Y., Gimbutas, Z., Greengard, L.F., Ethridge, J.F., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: A wideband fast multipole method for the helmholtz equation in three dimensions. J. Comput. Phys. 216(1), 300–325 (2006)MathSciNetCrossRefMATH Cheng, H., Crutchfield, W.Y., Gimbutas, Z., Greengard, L.F., Ethridge, J.F., Huang, J., Rokhlin, V., Yarvin, N., Zhao, J.: A wideband fast multipole method for the helmholtz equation in three dimensions. J. Comput. Phys. 216(1), 300–325 (2006)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)MATH Colton, D.L., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)MATH
14.
Zurück zum Zitat Deaño, A., Huybrechs, D., Iserles, A.: Computing Highly Oscillatory Integrals, vol. 155. SIAM, Philadelphia (2018)MATH Deaño, A., Huybrechs, D., Iserles, A.: Computing Highly Oscillatory Integrals, vol. 155. SIAM, Philadelphia (2018)MATH
15.
Zurück zum Zitat Domínguez, V., Graham, I.G., Smyshlyaev, V.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106, 471–510 (2007)MathSciNetCrossRefMATH Domínguez, V., Graham, I.G., Smyshlyaev, V.: A hybrid numerical-asymptotic boundary integral method for high-frequency acoustic scattering. Numer. Math. 106, 471–510 (2007)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. I: the two-dimensional case. Numer. Math. 114, 271–354 (2009)MathSciNetCrossRefMATH Ecevit, F., Reitich, F.: Analysis of multiple scattering iterations for high-frequency scattering problems. I: the two-dimensional case. Numer. Math. 114, 271–354 (2009)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ganesh, M., Hawkins, S.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230, 104–125 (2011)MathSciNetCrossRefMATH Ganesh, M., Hawkins, S.: A fully discrete Galerkin method for high frequency exterior acoustic scattering in three dimensions. J. Comput. Phys. 230, 104–125 (2011)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Ganesh, M., Langdon, S., Sloan, I.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204, 363–374 (2007)MathSciNetCrossRefMATH Ganesh, M., Langdon, S., Sloan, I.: Efficient evaluation of highly oscillatory acoustic scattering surface integrals. J. Comput. Appl. Math. 204, 363–374 (2007)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Geuzaine, C., Bruno, O., Reitich, F.: On the O(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41(5), 1488–1491 (2005)CrossRef Geuzaine, C., Bruno, O., Reitich, F.: On the O(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41(5), 1488–1491 (2005)CrossRef
20.
Zurück zum Zitat Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)CrossRefMATH Geuzaine, C., Remacle, J.F.: Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)CrossRefMATH
21.
Zurück zum Zitat Giladi, E.: Asymptotically derived boundary elements for the Helmholtz equation in high frequencies. J. Comput. Appl. Math. 198, 52–74 (2007)MathSciNetCrossRefMATH Giladi, E.: Asymptotically derived boundary elements for the Helmholtz equation in high frequencies. J. Comput. Appl. Math. 198, 52–74 (2007)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Groth, S., Huybrechs, D., Opsomer, P.: High-order terms in the ray expansion for high frequency scattering by single and multiple obstacles (2018) (in preparation) Groth, S., Huybrechs, D., Opsomer, P.: High-order terms in the ray expansion for high frequency scattering by single and multiple obstacles (2018) (in preparation)
24.
Zurück zum Zitat Groth, S.P., Hewett, D.P., Langdon, S.: Hybrid numerical-asymptotic approximation for high-frequency scattering by penetrable convex polygons. IMA J. Appl. Math. 80, 324–353 (2015)MathSciNetCrossRefMATH Groth, S.P., Hewett, D.P., Langdon, S.: Hybrid numerical-asymptotic approximation for high-frequency scattering by penetrable convex polygons. IMA J. Appl. Math. 80, 324–353 (2015)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Harrington, R.F.: Time-Harmonic Electromagnetic Fields. IEEE Press, Piscatawat (1961) Harrington, R.F.: Time-Harmonic Electromagnetic Fields. IEEE Press, Piscatawat (1961)
26.
Zurück zum Zitat Huybrechs, D., Vandewalle, S.: A two-dimensional wavelet-packet transform for matrix compression of integral equations with highly oscillatory kernel. J. Comput. Appl. Math. 197, 218–232 (2006)MathSciNetCrossRefMATH Huybrechs, D., Vandewalle, S.: A two-dimensional wavelet-packet transform for matrix compression of integral equations with highly oscillatory kernel. J. Comput. Appl. Math. 197, 218–232 (2006)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)MathSciNetCrossRefMATH Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Huybrechs, D., Vandewalle, S.: An efficient implementation of boundary element methods for computationally expensive Green’s functions. Eng. Anal. Bound. Elem. 32(8), 621–632 (2008)CrossRefMATH Huybrechs, D., Vandewalle, S.: An efficient implementation of boundary element methods for computationally expensive Green’s functions. Eng. Anal. Bound. Elem. 32(8), 621–632 (2008)CrossRefMATH
29.
Zurück zum Zitat Khoromskij, B.N.: Tensor-structured preconditioners and approximate inverse of elliptic operators in \({\mathbb{R}}^d\). J. Constr. Approx. 30, 599–620 (2009)CrossRefMATH Khoromskij, B.N.: Tensor-structured preconditioners and approximate inverse of elliptic operators in \({\mathbb{R}}^d\). J. Constr. Approx. 30, 599–620 (2009)CrossRefMATH
30.
Zurück zum Zitat Khoromskij, B.N., Veit, A.: Efficient computation of highly oscillatory integrals by using qtt tensor approximation. Comput. Methods Appl. Math. 16(1), 145–159 (2016)MathSciNetCrossRefMATH Khoromskij, B.N., Veit, A.: Efficient computation of highly oscillatory integrals by using qtt tensor approximation. Comput. Methods Appl. Math. 16(1), 145–159 (2016)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: a new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)MathSciNetCrossRefMATH Klöckner, A., Barnett, A., Greengard, L., O’Neil, M.: Quadrature by expansion: a new method for the evaluation of layer potentials. J. Comput. Phys. 252, 332–349 (2013)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Kress, R., Spassov, W.T.: On the condition number of boundary integral operators in acoustic and electromagnetic scattering. Numer. Math. 42, 77–95 (1983)MathSciNetCrossRefMATH Kress, R., Spassov, W.T.: On the condition number of boundary integral operators in acoustic and electromagnetic scattering. Numer. Math. 42, 77–95 (1983)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Melrose, R.B., Taylor, M.E.: Near peak Scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)MathSciNetCrossRefMATH Melrose, R.B., Taylor, M.E.: Near peak Scattering and the corrected Kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)MathSciNetCrossRefMATH
35.
36.
Zurück zum Zitat Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M.: Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41(2), 6:1–6:40 (2015)MathSciNetMATH Śmigaj, W., Betcke, T., Arridge, S., Phillips, J., Schweiger, M.: Solving boundary integral problems with BEM++. ACM Trans. Math. Softw. 41(2), 6:1–6:40 (2015)MathSciNetMATH
37.
Zurück zum Zitat Sweldens, W., Piessens, R.: Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions. SIAM J. Numer. Anal. 31(4), 1240–1264 (1994)MathSciNetCrossRefMATH Sweldens, W., Piessens, R.: Quadrature formulae and asymptotic error expansions for wavelet approximations of smooth functions. SIAM J. Numer. Anal. 31(4), 1240–1264 (1994)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Wald, I., Mark, W.R., Gunther, J., Boulos, S., Thiago, I., Hunt, W., Parker, S.G., Shirley, P.: State of the Art in Ray Tracing Animated Scenes. Eurograph, Newport (2007) Wald, I., Mark, W.R., Gunther, J., Boulos, S., Thiago, I., Hunt, W., Parker, S.G., Shirley, P.: State of the Art in Ray Tracing Animated Scenes. Eurograph, Newport (2007)
39.
Zurück zum Zitat Wong, R.S.: Asymptotic Approximations of Integrals. SIAM, Philadelphia (2001). (Republication of 1944) Wong, R.S.: Asymptotic Approximations of Integrals. SIAM, Philadelphia (2001). (Republication of 1944)
40.
Zurück zum Zitat Wu, T.: Boundary Element Acoustics. WIT Press (2000). (Reprint 2005) Wu, T.: Boundary Element Acoustics. WIT Press (2000). (Reprint 2005)
41.
Zurück zum Zitat Ying, L.: Fast directional computation of high frequency boundary integrals via local FFTs. SIAM Multiscale Model. Simul. 13(1), 423–439 (2015)MathSciNetCrossRefMATH Ying, L.: Fast directional computation of high frequency boundary integrals via local FFTs. SIAM Multiscale Model. Simul. 13(1), 423–439 (2015)MathSciNetCrossRefMATH
Metadaten
Titel
High-Frequency Asymptotic Compression of Dense BEM Matrices for General Geometries Without Ray Tracing
verfasst von
Daan Huybrechs
Peter Opsomer
Publikationsdatum
19.07.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0786-7

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe