Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

22.08.2018

Error Estimates of Spectral Galerkin Methods for a Linear Fractional Reaction–Diffusion Equation

verfasst von: Zhongqiang Zhang

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider a fractional diffusion equation with a reaction term in one dimensional space. We first establish the regularity in weighted Sobolev spaces. Then we present an optimal error estimate for a spectral Galerkin method for the equation and a sub-optimal error estimate for a spectral Petrov–Galerkin method. Numerical results suggest that the convergence order in a weighted \(L^2\)-norm is \(2\alpha +1\) for smooth inputs where \(\alpha \) is the order of the fractional Laplacian.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)MathSciNetCrossRefMATH Acosta, G., Borthagaray, J.P.: A fractional Laplace equation: regularity of solutions and finite element approximations. SIAM J. Numer. Anal. 55, 472–495 (2017)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comput. 87, 1821–1857 (2017)MathSciNetCrossRefMATH Acosta, G., Borthagaray, J.P., Bruno, O., Maas, M.: Regularity theory and high order numerical methods for the (1D)-fractional Laplacian. Math. Comput. 87, 1821–1857 (2017)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia, PA (1975)CrossRefMATH Askey, R.: Orthogonal Polynomials and Special Functions. SIAM, Philadelphia, PA (1975)CrossRefMATH
4.
Zurück zum Zitat Babuska, I., Guo, B.: Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces, SIAM J. Numer. Anal., 39, 1512–1538 (2001/02) Babuska, I., Guo, B.: Direct and inverse approximation theorems for the \(p\)-version of the finite element method in the framework of weighted Besov spaces. I. Approximability of functions in the weighted Besov spaces, SIAM J. Numer. Anal., 39, 1512–1538 (2001/02)
5.
Zurück zum Zitat Bagley, R.L.: On the fractional order initial value problem and its engineering applications. In: Nishimoto, K. (ed.) Fractional Calculus and its Applications, vol. 317, pp. 12–20. Nihon University, Koriyama (1990) Bagley, R.L.: On the fractional order initial value problem and its engineering applications. In: Nishimoto, K. (ed.) Fractional Calculus and its Applications, vol. 317, pp. 12–20. Nihon University, Koriyama (1990)
6.
Zurück zum Zitat Beyer, H., Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. 75, 623–635 (1995)MathSciNetCrossRefMATH Beyer, H., Kempfle, S.: Definition of physically consistent damping laws with fractional derivatives. Z. Angew. Math. Mech. 75, 623–635 (1995)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Chen, W.: A speculative study of 2/3-order fractional laplacian modeling of turbulence: some thoughts and conjectures. Chaos Interdiscip. J. Nonlinear Sci. 16, 023126 (2006)CrossRefMATH Chen, W.: A speculative study of 2/3-order fractional laplacian modeling of turbulence: some thoughts and conjectures. Chaos Interdiscip. J. Nonlinear Sci. 16, 023126 (2006)CrossRefMATH
8.
Zurück zum Zitat Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection–diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 413–441 (2011)MathSciNetCrossRefMATH Cifani, S., Jakobsen, E.R.: Entropy solution theory for fractional degenerate convection–diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire 28, 413–441 (2011)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cifani, S., Jakobsen, E.R.: On the spectral vanishing viscosity method for periodic fractional conservation laws. Math. Comput. 82, 1489–1514 (2013)MathSciNetCrossRefMATH Cifani, S., Jakobsen, E.R.: On the spectral vanishing viscosity method for periodic fractional conservation laws. Math. Comput. 82, 1489–1514 (2013)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Cousins, W., Sapsis, T.P.: Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model. Physica D 280, 48–58 (2014)CrossRefMATH Cousins, W., Sapsis, T.P.: Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model. Physica D 280, 48–58 (2014)CrossRefMATH
11.
Zurück zum Zitat Das, S., Pan, I.: Fractional Order Signal Processing, Springer Briefs in Applied Sciences and Technology. Springer, Heidelberg (2012). (Introductory concepts and applications)CrossRef Das, S., Pan, I.: Fractional Order Signal Processing, Springer Briefs in Applied Sciences and Technology. Springer, Heidelberg (2012). (Introductory concepts and applications)CrossRef
12.
Zurück zum Zitat Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M.: Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18, 342–360 (2015)MathSciNetCrossRefMATH Defterli, O., D’Elia, M., Du, Q., Gunzburger, M., Lehoucq, R., Meerschaert, M.M.: Fractional diffusion on bounded domains. Fract. Calc. Appl. Anal. 18, 342–360 (2015)MathSciNetCrossRefMATH
13.
Zurück zum Zitat D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)MathSciNetCrossRefMATH D’Elia, M., Gunzburger, M.: The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator. Comput. Math. Appl. 66, 1245–1260 (2013)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Deng, B., Zhang, Z., Zhao, X.: Superconvergence points for the spectral interpolation of Riesz fractional derivatives. arxiv:1709.10223 (2017) Deng, B., Zhang, Z., Zhao, X.: Superconvergence points for the spectral interpolation of Riesz fractional derivatives. arxiv:​1709.​10223 (2017)
15.
Zurück zum Zitat Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2017)MathSciNetCrossRefMATH Duo, S., van Wyk, H.W., Zhang, Y.: A novel and accurate finite difference method for the fractional Laplacian and the fractional Poisson problem. J. Comput. Phys. 355, 233–252 (2017)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Dyda, B.: Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15, 536–555 (2012)MathSciNetCrossRefMATH Dyda, B.: Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract. Calc. Appl. Anal. 15, 536–555 (2012)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Fdez-Manin, G., Munoz-Sola, R.: Polynomial approximation of some singular solutions in weighted Sobolev space. In: Ilin, A.V., Scott, L.R. (eds.) Proceedings of the Third International Conference on Spectral and Higher Order Methods, Houston Journal of Mathematics, Houston, Texas, (1995). ICOSAHOM 95 Fdez-Manin, G., Munoz-Sola, R.: Polynomial approximation of some singular solutions in weighted Sobolev space. In: Ilin, A.V., Scott, L.R. (eds.) Proceedings of the Third International Conference on Spectral and Higher Order Methods, Houston Journal of Mathematics, Houston, Texas, (1995). ICOSAHOM 95
18.
Zurück zum Zitat Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising. J. Sci. Comput. 65, 249–270 (2015)MathSciNetCrossRefMATH Gatto, P., Hesthaven, J.S.: Numerical approximation of the fractional Laplacian via \(hp\)-finite elements, with an application to image denoising. J. Sci. Comput. 65, 249–270 (2015)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance. III. The diffusion limit. In: Mathematical finance (Konstanz, 2001), Trends Math. Birkhäuser, Basel, pp. 171–180 (2000) Gorenflo, R., Mainardi, F., Scalas, E., Raberto, M.: Fractional calculus and continuous-time finance. III. The diffusion limit. In: Mathematical finance (Konstanz, 2001), Trends Math. Birkhäuser, Basel, pp. 171–180 (2000)
20.
Zurück zum Zitat Grubb, G.: Spectral asymptotics for nonsmooth singular Green operators. Commun. Partial Differ. Equ. 39, 530–573 (2014). (With an appendix by H. Abels)MathSciNetCrossRefMATH Grubb, G.: Spectral asymptotics for nonsmooth singular Green operators. Commun. Partial Differ. Equ. 39, 530–573 (2014). (With an appendix by H. Abels)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421, 1616–1634 (2015)MathSciNetCrossRefMATH Grubb, G.: Spectral results for mixed problems and fractional elliptic operators. J. Math. Anal. Appl. 421, 1616–1634 (2015)MathSciNetCrossRefMATH
22.
23.
Zurück zum Zitat Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)MathSciNetCrossRefMATH Guo, B.-Y., Wang, L.-L.: Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces. J. Approx. Theory 128, 1–41 (2004)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Hall, M.G., Barrick, T.R.: From diffusion-weighted mri to anomalous diffusion imaging. Magn. Resonan. Med. 59, 447–455 (2008)CrossRef Hall, M.G., Barrick, T.R.: From diffusion-weighted mri to anomalous diffusion imaging. Magn. Resonan. Med. 59, 447–455 (2008)CrossRef
25.
Zurück zum Zitat Hanyga, A., Seredyńska, M.: Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media-i. forward problems. Geophys. J. Int. 137, 319–335 (1999)CrossRef Hanyga, A., Seredyńska, M.: Some effects of the memory kernel singularity on wave propagation and inversion in poroelastic media-i. forward problems. Geophys. J. Int. 137, 319–335 (1999)CrossRef
26.
Zurück zum Zitat Huang, Y., Oberman, A.: Numerical methods for the fractional laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)MathSciNetCrossRefMATH Huang, Y., Oberman, A.: Numerical methods for the fractional laplacian: a finite difference-quadrature approach. SIAM J. Numer. Anal. 52, 3056–3084 (2014)MathSciNetCrossRefMATH
27.
28.
Zurück zum Zitat Lokshin, A.A., Rok, V.E.: Automodel solutions of wave equations with time lag. Russ. Math. Surv. 33, 243–244 (1978)CrossRefMATH Lokshin, A.A., Rok, V.E.: Automodel solutions of wave equations with time lag. Russ. Math. Surv. 33, 243–244 (1978)CrossRefMATH
29.
Zurück zum Zitat Ma, H., Sun, W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39, 1380–1394 (2001)MathSciNetCrossRefMATH Ma, H., Sun, W.: Optimal error estimates of the Legendre–Petrov–Galerkin method for the Korteweg–de Vries equation. SIAM J. Numer. Anal. 39, 1380–1394 (2001)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)CrossRef Mainardi, F.: Fractional calculus: some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardi, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)CrossRef
31.
Zurück zum Zitat Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRefMATH Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity. Imperial College Press, London (2010)CrossRefMATH
32.
Zurück zum Zitat Majda, A., McLaughlin, D., Tabak, E.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7, 9–44 (1997)MathSciNetCrossRefMATH Majda, A., McLaughlin, D., Tabak, E.: A one-dimensional model for dispersive wave turbulence. J. Nonlinear Sci. 7, 9–44 (1997)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRefMATH Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Meerschaert, M.M., Magin, R.L., Ye, A.Q.: Anisotropic fractional diffusion tensor imaging. J. Vib. Control 22, 2211–2221 (2015)MathSciNetCrossRefMATH Meerschaert, M.M., Magin, R.L., Ye, A.Q.: Anisotropic fractional diffusion tensor imaging. J. Vib. Control 22, 2211–2221 (2015)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010). (Civil-Comp Special Issue)CrossRefMATH Oldham, K.B.: Fractional differential equations in electrochemistry. Adv. Eng. Softw. 41, 9–12 (2010). (Civil-Comp Special Issue)CrossRefMATH
36.
Zurück zum Zitat Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)MathSciNetCrossRefMATH Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63, 010801 (2010)CrossRef Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Appl. Mech. Rev. 63, 010801 (2010)CrossRef
38.
Zurück zum Zitat Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000)MathSciNetCrossRef Scalas, E., Gorenflo, R., Mainardi, F.: Fractional calculus and continuous-time finance. Physica A 284, 376–384 (2000)MathSciNetCrossRef
39.
40.
Zurück zum Zitat Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing. Springer, London (2012)CrossRefMATH Sheng, H., Chen, Y., Qiu, T.: Fractional Processes and Fractional-Order Signal Processing. Springer, London (2012)CrossRefMATH
41.
Zurück zum Zitat Simpson, D., Lindgren, F., Rue, H.: Think continuous: Markovian gaussian models in spatial statistics. Spat. Stat. 1, 16–29 (2012)CrossRef Simpson, D., Lindgren, F., Rue, H.: Think continuous: Markovian gaussian models in spatial statistics. Spat. Stat. 1, 16–29 (2012)CrossRef
42.
Zurück zum Zitat Suarez, L., Shokooh, A.: Response of systems with damping materials modeled using fractional calculus. Appl. Mech. Rev. 48, S118–S126 (1995)CrossRef Suarez, L., Shokooh, A.: Response of systems with damping materials modeled using fractional calculus. Appl. Mech. Rev. 48, S118–S126 (1995)CrossRef
43.
Zurück zum Zitat Toledo-Hernandez, R., Rico-Ramirez, V., Iglesias-Silva, G.A., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: fractional models for biological reactions. Chem. Eng. Sci. 117, 217–228 (2014)CrossRef Toledo-Hernandez, R., Rico-Ramirez, V., Iglesias-Silva, G.A., Diwekar, U.M.: A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: fractional models for biological reactions. Chem. Eng. Sci. 117, 217–228 (2014)CrossRef
45.
Zurück zum Zitat Zhang, X., Gunzburger, M., Ju, L.: Quadrature rules for finite element approximations of 1D nonlocal problems. J. Comput. Phys. 310, 213–236 (2016)MathSciNetCrossRefMATH Zhang, X., Gunzburger, M., Ju, L.: Quadrature rules for finite element approximations of 1D nonlocal problems. J. Comput. Phys. 310, 213–236 (2016)MathSciNetCrossRefMATH
Metadaten
Titel
Error Estimates of Spectral Galerkin Methods for a Linear Fractional Reaction–Diffusion Equation
verfasst von
Zhongqiang Zhang
Publikationsdatum
22.08.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0800-0

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe