Skip to main content
Erschienen in: Journal of Scientific Computing 2/2019

25.07.2018

An Ultra-weak Discontinuous Galerkin Method for Schrödinger Equation in One Dimension

verfasst von: Anqi Chen, Fengyan Li, Yingda Cheng

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we develop an ultra-weak discontinuous Galerkin method to solve the one-dimensional nonlinear Schrödinger equation. Stability conditions and error estimates are derived for the scheme with a general class of numerical fluxes. The error estimates are based on detailed analysis of the projection operator associated with each individual flux choice. Depending on the parameters, we find out that in some cases, the projection can be defined element-wise, facilitating analysis. In most cases, the projection is global, and its analysis depends on the resulting \(2\times 2\) block-circulant matrix structures. For a large class of parameter choices, optimal a priori \(L^2\) error estimates can be obtained. Numerical examples are provided verifying theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1), 5–40 (2006)MathSciNetMATHCrossRef Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27(1), 5–40 (2006)MathSciNetMATHCrossRef
2.
Zurück zum Zitat Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)MathSciNetMATHCrossRef Ascher, U.M., Ruuth, S.J., Spiteri, R.J.: Implicit–explicit Runge–Kutta methods for time-dependent partial differential equations. Appl. Numer. Math. 25(2–3), 151–167 (1997)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)MathSciNetMATHCrossRef Bona, J., Chen, H., Karakashian, O., Xing, Y.: Conservative, discontinuous Galerkin-methods for the generalized Korteweg–de Vries equation. Math. Comput. 82(283), 1401–1432 (2013)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic pdes to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998)MathSciNetMATHCrossRef Cessenat, O., Despres, B.: Application of an ultra weak variational formulation of elliptic pdes to the two-dimensional Helmholtz problem. SIAM J. Numer. Anal. 35(1), 255–299 (1998)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)MathSciNetMATHCrossRef Chang, Q., Jia, E., Sun, W.: Difference schemes for solving the generalized nonlinear Schrödinger equation. J. Comput. Phys. 148(2), 397–415 (1999)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Cheng, Y., Chou, C.-S., Li, F., Xing, Y.: \(\text{ L }^2\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86(303), 121–155 (2017)MATHMathSciNetCrossRef Cheng, Y., Chou, C.-S., Li, F., Xing, Y.: \(\text{ L }^2\) stable discontinuous Galerkin methods for one-dimensional two-way wave equations. Math. Comput. 86(303), 121–155 (2017)MATHMathSciNetCrossRef
7.
Zurück zum Zitat Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)MathSciNetMATHCrossRef Cheng, Y., Shu, C.-W.: A discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives. Math. Comput. 77(262), 699–730 (2008)MathSciNetMATHCrossRef
8.
Zurück zum Zitat Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978) Ciarlet, P.G.: The Finite Element Method for Elliptic Problems, Studies in Mathematics and Its Applications, vol. 4. North-Holland Publishing Co., Amsterdam (1978)
9.
Zurück zum Zitat Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.-W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH
10.
Zurück zum Zitat Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetMATHCrossRef Cockburn, B., Lin, S.-Y., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH
12.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetMATHCrossRef Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35(6), 2440–2463 (1998)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetMATHCrossRef Cockburn, B., Shu, C.-W.: The Runge–Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetMATHCrossRef
14.
Zurück zum Zitat Dag, I.: A quadratic b-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 174(1–2), 247–258 (1999)MATH Dag, I.: A quadratic b-spline finite element method for solving nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 174(1–2), 247–258 (1999)MATH
15.
Zurück zum Zitat Douglas J., Dupont T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences. Lecture Notes in Physics, vol 58. Springer, Berlin, Heidelberg (1976) Douglas J., Dupont T.: Interior penalty procedures for elliptic and parabolic Galerkin methods. In: Glowinski, R., Lions, J.L. (eds.) Computing Methods in Applied Sciences. Lecture Notes in Physics, vol 58. Springer, Berlin, Heidelberg (1976)
16.
Zurück zum Zitat Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)MathSciNetMATHCrossRef Grote, M.J., Schneebeli, A., Schötzau, D.: Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44(6), 2408–2431 (2006)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Karakashian, O., Makridakis, C.: A space–time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)MATHCrossRef Karakashian, O., Makridakis, C.: A space–time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)MATHCrossRef
18.
Zurück zum Zitat Karakashian, O., Makridakis, C.: A space–time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)MathSciNetMATHCrossRef Karakashian, O., Makridakis, C.: A space–time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)MathSciNetMATHCrossRef
19.
Zurück zum Zitat Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun. Comput. Phys. 17(2), 510–541 (2015)MathSciNetMATHCrossRef Liang, X., Khaliq, A.Q.M., Xing, Y.: Fourth order exponential time differencing method with local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations. Commun. Comput. Phys. 17(2), 510–541 (2015)MathSciNetMATHCrossRef
20.
Zurück zum Zitat Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection–diffusion equations. Math. Comput. 84(295), 2263–2295 (2015)MathSciNetMATHCrossRef Liu, H.: Optimal error estimates of the direct discontinuous Galerkin method for convection–diffusion equations. Math. Comput. 84(295), 2263–2295 (2015)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Lu, W., Huang, Y., Liu, H.: Mass preserving discontinuous Galerkin methods for Schrödinger equations. J. Comput. Phys. 282, 210–226 (2015)MathSciNetMATHCrossRef Lu, W., Huang, Y., Liu, H.: Mass preserving discontinuous Galerkin methods for Schrödinger equations. J. Comput. Phys. 282, 210–226 (2015)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016)MathSciNetMATHCrossRef Meng, X., Shu, C.-W., Wu, B.: Optimal error estimates for discontinuous Galerkin methods based on upwind-biased fluxes for linear hyperbolic equations. Math. Comput. 85(299), 1225–1261 (2016)MathSciNetMATHCrossRef
23.
Zurück zum Zitat Pathria, D., Morris, J.L.: Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87(1), 108–125 (1990)MathSciNetMATHCrossRef Pathria, D., Morris, J.L.: Pseudo-spectral solution of nonlinear Schrödinger equations. J. Comput. Phys. 87(1), 108–125 (1990)MathSciNetMATHCrossRef
24.
Zurück zum Zitat Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab., N. Mex. (USA) (1973) Reed, W.H., Hill, T.: Triangular mesh methods for the neutron transport equation. Technical report, Los Alamos Scientific Lab., N. Mex. (USA) (1973)
25.
Zurück zum Zitat Riviere, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. Contemp. Math. 329, 271–282 (2003)MathSciNetMATHCrossRef Riviere, B., Wheeler, M.F.: Discontinuous finite element methods for acoustic and elastic wave problems. Contemp. Math. 329, 271–282 (2003)MathSciNetMATHCrossRef
26.
Zurück zum Zitat Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3(3), 337–360 (1999)MathSciNetMATHCrossRef Rivière, B., Wheeler, M.F., Girault, V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3(3), 337–360 (1999)MathSciNetMATHCrossRef
27.
Zurück zum Zitat Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001)MathSciNetMATHCrossRef Rivière, B., Wheeler, M.F., Girault, V.: A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39(3), 902–931 (2001)MathSciNetMATHCrossRef
28.
Zurück zum Zitat Sheng, Q., Khaliq, A., Al-Said, E.: Solving the generalized nonlinear Schrödinger equation via quartic spline approximation. J. Comput. Phys. 166(2), 400–417 (2001)MathSciNetMATHCrossRef Sheng, Q., Khaliq, A., Al-Said, E.: Solving the generalized nonlinear Schrödinger equation via quartic spline approximation. J. Comput. Phys. 166(2), 400–417 (2001)MathSciNetMATHCrossRef
29.
Zurück zum Zitat Shu, C.-W.: Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham (2016) Shu, C.-W.: Discontinuous Galerkin methods for time-dependent convection dominated problems: basics, recent developments and comparison with other methods. In: Barrenechea, G., Brezzi, F., Cangiani, A., Georgoulis, E. (eds.) Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial Differential Equations. Lecture Notes in Computational Science and Engineering, vol 114. Springer, Cham (2016)
30.
Zurück zum Zitat Taha, T.R., Ablowitz, M.I.: Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230 (1984)MathSciNetMATHCrossRef Taha, T.R., Ablowitz, M.I.: Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation. J. Comput. Phys. 55(2), 203–230 (1984)MathSciNetMATHCrossRef
31.
Zurück zum Zitat Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)MathSciNetMATHCrossRef Wheeler, M.F.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15(1), 152–161 (1978)MathSciNetMATHCrossRef
32.
Zurück zum Zitat Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)MathSciNetMATHCrossRef Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for nonlinear Schrödinger equations. J. Comput. Phys. 205(1), 72–97 (2005)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)MathSciNetMATHCrossRef Xu, Y., Shu, C.-W.: Optimal error estimates of the semidiscrete local discontinuous Galerkin methods for high order wave equations. SIAM J. Numer. Anal. 50(1), 79–104 (2012)MathSciNetMATHCrossRef
Metadaten
Titel
An Ultra-weak Discontinuous Galerkin Method for Schrödinger Equation in One Dimension
verfasst von
Anqi Chen
Fengyan Li
Yingda Cheng
Publikationsdatum
25.07.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0789-4

Weitere Artikel der Ausgabe 2/2019

Journal of Scientific Computing 2/2019 Zur Ausgabe