Skip to main content

2022 | OriginalPaper | Buchkapitel

12. Potential of Incremental Forming Techniques for Aerospace Applications

verfasst von : Ricardo J. Alves de Sousa, D. G. Afonso, F. Rubino, A. K. Behera

Erschienen in: Materials, Structures and Manufacturing for Aircraft

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Incremental sheet metal forming (ISF) processes are part of a set of non-classical techniques that allow producing small-batches, customized and/or specific geometries for advanced engineering applications, such as aerospace, automotive, and biomedical parts. Combined or not with other joining processes and additive manufacturing techniques, ISF processes permit rapid prototyping frameworks and can be included in the class of smart manufacturing processes.
This chapter discusses the fundamentals of ISF technology, key attributes, future challenges, and presents a few examples related to the use of incremental forming for the development of complex parts as specifically found in aerospace applications such as airfoils. The use of incremental forming to produce customized designs and to perform quick tryouts of ready-to-use parts contributes to decreasing the time to market, decreasing tooling cost and increasing part design freedom.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal. Cirp Annals-Manufacturing Technology, 54(2), 623–649.CrossRef Jeswiet, J., Micari, F., Hirt, G., Bramley, A., Duflou, J., & Allwood, J. (2005). Asymmetric single point incremental forming of sheet metal. Cirp Annals-Manufacturing Technology, 54(2), 623–649.CrossRef
7.
Zurück zum Zitat Behera, A. K. (2013). Shape feature taxonomy development for toolpath optimisation in incremental sheet forming. PhD Thesis. Katholieke Universiteit Leuven. Behera, A. K. (2013). Shape feature taxonomy development for toolpath optimisation in incremental sheet forming. PhD Thesis. Katholieke Universiteit Leuven.
8.
Zurück zum Zitat Emmens, W., & Van den Boogaard, A. (2009). An overview of stabilizing deformation mechanisms in incremental sheet forming. Journal of Materials Processing Technology, 209(8), 3688–3695.CrossRef Emmens, W., & Van den Boogaard, A. (2009). An overview of stabilizing deformation mechanisms in incremental sheet forming. Journal of Materials Processing Technology, 209(8), 3688–3695.CrossRef
9.
Zurück zum Zitat Jackson, K., & Allwood, J. (2009). The mechanics of incremental sheet forming. Journal of Materials Processing Technology, 209(3), 1158–1174.CrossRef Jackson, K., & Allwood, J. (2009). The mechanics of incremental sheet forming. Journal of Materials Processing Technology, 209(3), 1158–1174.CrossRef
10.
Zurück zum Zitat Malhotra, R., Xue, L., Belytschko, T., & Cao, J. (2012). Mechanics of fracture in single point incremental forming. Journal of Materials Processing Technology, 212(7), 1573–1590.CrossRef Malhotra, R., Xue, L., Belytschko, T., & Cao, J. (2012). Mechanics of fracture in single point incremental forming. Journal of Materials Processing Technology, 212(7), 1573–1590.CrossRef
11.
Zurück zum Zitat Silva, M., Skjødt, M., Martins, P. A., & Bay, N. (2008). Revisiting the fundamentals of single point incremental forming by means of membrane analysis. International Journal of Machine Tools and Manufacture, 48(1), 73–83.CrossRef Silva, M., Skjødt, M., Martins, P. A., & Bay, N. (2008). Revisiting the fundamentals of single point incremental forming by means of membrane analysis. International Journal of Machine Tools and Manufacture, 48(1), 73–83.CrossRef
12.
Zurück zum Zitat Verbert, J. (2010). Computer aided process planning for rapid prototyping with incremental sheet forming techniques. PhD Thesis. Katholieke Universiteit Leuven., Leuven. Verbert, J. (2010). Computer aided process planning for rapid prototyping with incremental sheet forming techniques. PhD Thesis. Katholieke Universiteit Leuven., Leuven.
13.
Zurück zum Zitat Bhattacharya, A., Maneesh, K., Venkata Reddy, N., & Cao, J. (2011). Formability and surface finish studies in single point incremental forming. Journal of Manufacturing Science and Engineering, 133(6). Bhattacharya, A., Maneesh, K., Venkata Reddy, N., & Cao, J. (2011). Formability and surface finish studies in single point incremental forming. Journal of Manufacturing Science and Engineering, 133(6).
14.
Zurück zum Zitat Silva, M. B., Nielsen, P. S., Bay, N., & Martins, P. (2011). Failure mechanisms in single-point incremental forming of metals. The International Journal of Advanced Manufacturing Technology, 56(9), 893–903.CrossRef Silva, M. B., Nielsen, P. S., Bay, N., & Martins, P. (2011). Failure mechanisms in single-point incremental forming of metals. The International Journal of Advanced Manufacturing Technology, 56(9), 893–903.CrossRef
15.
Zurück zum Zitat Allwood, J., Shouler, D., & Tekkaya, A. E. (2007). The increased forming limits of incremental sheet forming processes. Paper presented at the Key Engineering Materials. Allwood, J., Shouler, D., & Tekkaya, A. E. (2007). The increased forming limits of incremental sheet forming processes. Paper presented at the Key Engineering Materials.
16.
Zurück zum Zitat Eyckens, P., Van Bael, A., & Van Houtte, P. (2009). Marciniak–Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. International Journal of Plasticity, 25(12), 2249–2268.CrossRef Eyckens, P., Van Bael, A., & Van Houtte, P. (2009). Marciniak–Kuczynski type modelling of the effect of through-thickness shear on the forming limits of sheet metal. International Journal of Plasticity, 25(12), 2249–2268.CrossRef
17.
Zurück zum Zitat Montanari, L., Cristino, V., Silva, M., & Martins, P. (2013). A new approach for deformation history of material elements in hole-flanging produced by single point incremental forming. The International Journal of Advanced Manufacturing Technology, 69(5–8), 1175–1183.CrossRef Montanari, L., Cristino, V., Silva, M., & Martins, P. (2013). A new approach for deformation history of material elements in hole-flanging produced by single point incremental forming. The International Journal of Advanced Manufacturing Technology, 69(5–8), 1175–1183.CrossRef
18.
Zurück zum Zitat Khazaali, H., & Fereshteh-Saniee, F. (2018). Application of the Taguchi method for efficient studying of elevated-temperature incremental forming of a titanium alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2), 43.CrossRef Khazaali, H., & Fereshteh-Saniee, F. (2018). Application of the Taguchi method for efficient studying of elevated-temperature incremental forming of a titanium alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(2), 43.CrossRef
19.
Zurück zum Zitat Valle, P. D., Amorim, F. L., Da Costa, D. D., & Marcondes, P. V. (2018). Experimental investigations on the incremental sheet forming of commercial steel ASTM A653 CS-A G90 to predict maximum bending effort. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(6), 322.CrossRef Valle, P. D., Amorim, F. L., Da Costa, D. D., & Marcondes, P. V. (2018). Experimental investigations on the incremental sheet forming of commercial steel ASTM A653 CS-A G90 to predict maximum bending effort. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(6), 322.CrossRef
20.
Zurück zum Zitat Allwood, J. M., King, G. P. F., & Duflou, J. (2005). A structured search for applications of the incremental sheet forming process by product segmentation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219, 239–244.CrossRef Allwood, J. M., King, G. P. F., & Duflou, J. (2005). A structured search for applications of the incremental sheet forming process by product segmentation. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219, 239–244.CrossRef
21.
Zurück zum Zitat Adams, D., & Jeswiet, J. (2014). Design rules and applications of single-point incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(5), 754–760.CrossRef Adams, D., & Jeswiet, J. (2014). Design rules and applications of single-point incremental forming. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 229(5), 754–760.CrossRef
24.
Zurück zum Zitat Durante, M., Formisano, A., & Lambiase, F. (2018). Incremental forming of polycarbonate sheets. Journal of Materials Processing Technology, 253(57–63), 25. Durante, M., Formisano, A., & Lambiase, F. (2018). Incremental forming of polycarbonate sheets. Journal of Materials Processing Technology, 253(57–63), 25.
25.
Zurück zum Zitat Durante, M., Formisano, A., & Lambiase, F. (2019). Formability of polycarbonate sheets in single-point incremental forming. The International Journal of Advanced Manufacturing Technology, 102(5–8), 2049–2062.CrossRef Durante, M., Formisano, A., & Lambiase, F. (2019). Formability of polycarbonate sheets in single-point incremental forming. The International Journal of Advanced Manufacturing Technology, 102(5–8), 2049–2062.CrossRef
28.
Zurück zum Zitat Göttmann, A., & Korinth, M. (2012). Manufacturing of cranial implants using incremental sheet metal forming. In Proceedings 1st internat. conf. on design and processes for medical devices PROMED, pp. 287–290. Göttmann, A., & Korinth, M. (2012). Manufacturing of cranial implants using incremental sheet metal forming. In Proceedings 1st internat. conf. on design and processes for medical devices PROMED, pp. 287–290.
30.
Zurück zum Zitat Trzepieciński, T., Krasowski, B., Kubit, A., & Wydrzyński, D. (2018). Possibilities of application of incremental sheet-forming technique in aircraft industry. Scientific Letters of Rzeszow University of Technology - Mechanics, 1(2018), 87–100.CrossRef Trzepieciński, T., Krasowski, B., Kubit, A., & Wydrzyński, D. (2018). Possibilities of application of incremental sheet-forming technique in aircraft industry. Scientific Letters of Rzeszow University of Technology - Mechanics, 1(2018), 87–100.CrossRef
31.
Zurück zum Zitat Fan, G., Gao, L., Hussain, G., & Wu, Z. (2008). Electric hot incremental forming: A novel technique. International Journal of Machine Tools and Manufacture, 48(15), 1688–1692.CrossRef Fan, G., Gao, L., Hussain, G., & Wu, Z. (2008). Electric hot incremental forming: A novel technique. International Journal of Machine Tools and Manufacture, 48(15), 1688–1692.CrossRef
32.
Zurück zum Zitat Kleiner, M., Geiger, M., & Klaus, A. (2003). Manufacturing of lightweight components by metal forming. CIRP Annals, 52, 521–542.CrossRef Kleiner, M., Geiger, M., & Klaus, A. (2003). Manufacturing of lightweight components by metal forming. CIRP Annals, 52, 521–542.CrossRef
33.
Zurück zum Zitat Gupta, P., Szekeres, A., & Jeswiet, J. (2021). Manufacture of an aerospace component with hybrid incremental forming methodology. International Journal of Material Forming, 14, 293–308.CrossRef Gupta, P., Szekeres, A., & Jeswiet, J. (2021). Manufacture of an aerospace component with hybrid incremental forming methodology. International Journal of Material Forming, 14, 293–308.CrossRef
34.
Zurück zum Zitat Gupta, P., Szekeres, A., & Jeswiet, J. (2019). Design and development of an aerospace component with single-point incremental forming. The International Journal of Advanced Manufacturing Technology, 103, 3683–3702.CrossRef Gupta, P., Szekeres, A., & Jeswiet, J. (2019). Design and development of an aerospace component with single-point incremental forming. The International Journal of Advanced Manufacturing Technology, 103, 3683–3702.CrossRef
35.
Zurück zum Zitat Mohanraj, R., & Elangovan, S. (2020). Incremental sheet metal forming of Ti–6Al–4V alloy for aerospace application. Transactions of the Canadian Society for Mechanical Engineering, 44(1), 56–64.CrossRef Mohanraj, R., & Elangovan, S. (2020). Incremental sheet metal forming of Ti–6Al–4V alloy for aerospace application. Transactions of the Canadian Society for Mechanical Engineering, 44(1), 56–64.CrossRef
38.
Zurück zum Zitat Scheffler, S., Pierer, A., Scholz, P., Melzer, S., Weise, D., & Rambousek, Z. (2019). Incremental sheet metal forming on the example of car exterior skin parts. Procedia Manufacturing, 29, 105–111.CrossRef Scheffler, S., Pierer, A., Scholz, P., Melzer, S., Weise, D., & Rambousek, Z. (2019). Incremental sheet metal forming on the example of car exterior skin parts. Procedia Manufacturing, 29, 105–111.CrossRef
39.
Zurück zum Zitat Peter, I., Fracchia, E., Canale, I., & Maiorano, R. (2019). Incremental sheet forming for prototyping automotive modules. Procedia Manufacturing, 32, 50–58.CrossRef Peter, I., Fracchia, E., Canale, I., & Maiorano, R. (2019). Incremental sheet forming for prototyping automotive modules. Procedia Manufacturing, 32, 50–58.CrossRef
40.
Zurück zum Zitat Seo, D., Kim, H., Heo, Y., Kim, N., & Kim, H. Y. (2000). Forming and drawing characteristics of tailor welded sheets in a circular draw bead. Journal of Materials Processing Technology, 105, 294–301.CrossRef Seo, D., Kim, H., Heo, Y., Kim, N., & Kim, H. Y. (2000). Forming and drawing characteristics of tailor welded sheets in a circular draw bead. Journal of Materials Processing Technology, 105, 294–301.CrossRef
41.
Zurück zum Zitat Xue, S., Zhou, J., & He, Y. Q. (2011). Tensile testing on formability of different gauge tailor-welded blanks. The Open Materials Science Journal, 5, 89–92.CrossRef Xue, S., Zhou, J., & He, Y. Q. (2011). Tensile testing on formability of different gauge tailor-welded blanks. The Open Materials Science Journal, 5, 89–92.CrossRef
42.
Zurück zum Zitat Padmanabhan, R., Baptista, A. J., Oliveira, M. C., & Menezes, L. F. (2007). Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailor-welded blanks. Journal of Materials Processing Technology., 184, 288–293.CrossRef Padmanabhan, R., Baptista, A. J., Oliveira, M. C., & Menezes, L. F. (2007). Effect of anisotropy on the deep-drawing of mild steel and dual-phase steel tailor-welded blanks. Journal of Materials Processing Technology., 184, 288–293.CrossRef
43.
Zurück zum Zitat Zadpoor, A. A., Sinke, J., & Benedictus, R. (2007). Mechanics of tailor welded blanks: An overview. Key Engineering Materials, 344, 373–382.CrossRef Zadpoor, A. A., Sinke, J., & Benedictus, R. (2007). Mechanics of tailor welded blanks: An overview. Key Engineering Materials, 344, 373–382.CrossRef
44.
Zurück zum Zitat Kaushik, Y. (2015). A review on use of aluminium alloys in aircraft components. I-Manager’s. Journal on Material Science, 3(3), 33–38. Kaushik, Y. (2015). A review on use of aluminium alloys in aircraft components. I-Manager’s. Journal on Material Science, 3(3), 33–38.
45.
Zurück zum Zitat Ambrogio, G., Fratini, L., & Micari, F. Incremental forming of friction stir welded taylored sheets. In Proceedings of the ASME 8th biennial conference on engineering systems design and analysis. Volume 4: Fatigue and fracture, heat transfer, internal combustion engines, manufacturing, and technology and society. Torino, Italy. July 4–7, 2006. pp. 757–762. ASME. https://doi.org/10.1115/ESDA2006-95375. Ambrogio, G., Fratini, L., & Micari, F. Incremental forming of friction stir welded taylored sheets. In Proceedings of the ASME 8th biennial conference on engineering systems design and analysis. Volume 4: Fatigue and fracture, heat transfer, internal combustion engines, manufacturing, and technology and society. Torino, Italy. July 4–7, 2006. pp. 757–762. ASME. https://​doi.​org/​10.​1115/​ESDA2006-95375.
46.
Zurück zum Zitat Ambrogio, G., Filice, L., Fratini, L., & Micari, F. (2003). Some relevant correlations between process parameters and process performance in incremental forming of metal sheets, In Proceedings of the 6th esaform conference on material forming, pp. 175–178. Ambrogio, G., Filice, L., Fratini, L., & Micari, F. (2003). Some relevant correlations between process parameters and process performance in incremental forming of metal sheets, In Proceedings of the 6th esaform conference on material forming, pp. 175–178.
49.
Zurück zum Zitat Ebrahimzadeh, P., Baseri, H., & Mirnia, M. J. (2018). Formability of aluminum 5083 friction stir welded blank in two-point incremental forming process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering., 232(3), 267–280. https://doi.org/10.1177/0954408917692370CrossRef Ebrahimzadeh, P., Baseri, H., & Mirnia, M. J. (2018). Formability of aluminum 5083 friction stir welded blank in two-point incremental forming process. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering., 232(3), 267–280. https://​doi.​org/​10.​1177/​0954408917692370​CrossRef
51.
Zurück zum Zitat Ghadmode, M. M., Patil, A. R., Sonawane, B. U., & Mulay, A. (2021). Analysis of TIG-welded aluminum alloys during single point incremental forming at different wall angles. In H. K. Dave & D. Nedelcu (Eds.), Advances in manufacturing processes. Lecture notes in mechanical engineering. Springer. https://doi.org/10.1007/978-981-15-9117-4_15CrossRef Ghadmode, M. M., Patil, A. R., Sonawane, B. U., & Mulay, A. (2021). Analysis of TIG-welded aluminum alloys during single point incremental forming at different wall angles. In H. K. Dave & D. Nedelcu (Eds.), Advances in manufacturing processes. Lecture notes in mechanical engineering. Springer. https://​doi.​org/​10.​1007/​978-981-15-9117-4_​15CrossRef
52.
Zurück zum Zitat Wang, X., Wang, K., Shen, Y., & Kai, H. (2008). Comparison of fatigue property between friction stir and TIG welds. Journal of University of Science and Technology Beijing, 15(3), 280–284.CrossRef Wang, X., Wang, K., Shen, Y., & Kai, H. (2008). Comparison of fatigue property between friction stir and TIG welds. Journal of University of Science and Technology Beijing, 15(3), 280–284.CrossRef
53.
Zurück zum Zitat Fadaeifard, F., Matori, K. A., Garavi, F., Al-Falahi, M., & Sarrigani, G. V. (2016). Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy. Transactions of the Nonferrous Metals Society of China, 26, 3102–3114.CrossRef Fadaeifard, F., Matori, K. A., Garavi, F., Al-Falahi, M., & Sarrigani, G. V. (2016). Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy. Transactions of the Nonferrous Metals Society of China, 26, 3102–3114.CrossRef
55.
Zurück zum Zitat Equbal, A., Sood, A. K., & Shamim, M. (2015). Rapid tooling: A major shift in tooling practice. Manufacturing and Industrial Engineering, 14(3–4). Equbal, A., Sood, A. K., & Shamim, M. (2015). Rapid tooling: A major shift in tooling practice. Manufacturing and Industrial Engineering, 14(3–4).
56.
Zurück zum Zitat Tackett, E. (2012). Rapid tooling. Saddleback College Advanced Technology Center. Tackett, E. (2012). Rapid tooling. Saddleback College Advanced Technology Center.
57.
Zurück zum Zitat Appermont, R., Van Mieghem, B., Van Bael, A., Bens, J., Ivens, J., Vanhove, H., Behera, A. K., & Duflou, J. (2012). Sheet-metal based molds for low-pressure processing of thermoplastics. In Proceedings of the 5th bi-annual PMI conference, Vol. 5, pp 383–388. Appermont, R., Van Mieghem, B., Van Bael, A., Bens, J., Ivens, J., Vanhove, H., Behera, A. K., & Duflou, J. (2012). Sheet-metal based molds for low-pressure processing of thermoplastics. In Proceedings of the 5th bi-annual PMI conference, Vol. 5, pp 383–388.
58.
Zurück zum Zitat Rodriguez-Alabanda, O., Narvaez, M. A., Guerrero-Vaca, G., & Romero, P. E. (2018). Manufacturing of non-stick molds from pre-painted aluminum sheets via single point incremental forming. Applied Sciences - Special Issue Mechanical Behaviour of Aluminium Alloys, 8(6), 1002. Rodriguez-Alabanda, O., Narvaez, M. A., Guerrero-Vaca, G., & Romero, P. E. (2018). Manufacturing of non-stick molds from pre-painted aluminum sheets via single point incremental forming. Applied Sciences - Special Issue Mechanical Behaviour of Aluminium Alloys, 8(6), 1002.
59.
Zurück zum Zitat Camara, J. (2009). Single point incremental forming, IST—UTL Master Thesis. Camara, J. (2009). Single point incremental forming, IST—UTL Master Thesis.
60.
Zurück zum Zitat Gupta, P., & Jeswiet, J. (2019). Manufacture of an aerospace component by single point incremental forming. Procedia Manufacturing, 29, 112–119.CrossRef Gupta, P., & Jeswiet, J. (2019). Manufacture of an aerospace component by single point incremental forming. Procedia Manufacturing, 29, 112–119.CrossRef
65.
Zurück zum Zitat Behera, A. K., Lauwers, B., & Duflou, J. R. (2014). Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming. Computers in Industry, 65(4), 563–584.CrossRef Behera, A. K., Lauwers, B., & Duflou, J. R. (2014). Tool path generation framework for accurate manufacture of complex 3D sheet metal parts using single point incremental forming. Computers in Industry, 65(4), 563–584.CrossRef
66.
Zurück zum Zitat Bagudanch, I., Garcia-Romeu, M., & Sabater, M. (2015). Incremental forming of polymers: Process parameters selection from the perspective of electric energy consumption and cost. Journal of Cleaner Production. Bagudanch, I., Garcia-Romeu, M., & Sabater, M. (2015). Incremental forming of polymers: Process parameters selection from the perspective of electric energy consumption and cost. Journal of Cleaner Production.
67.
Zurück zum Zitat Behera, A. K., Afonso, D., Murphy, A., Jin, Y., & de Sousa, R. A. (2018). Accuracy analysis of incrementally formed tunnel shaped parts. In Recent advances in intelligent manufacturing (pp. 40–49). Springer.CrossRef Behera, A. K., Afonso, D., Murphy, A., Jin, Y., & de Sousa, R. A. (2018). Accuracy analysis of incrementally formed tunnel shaped parts. In Recent advances in intelligent manufacturing (pp. 40–49). Springer.CrossRef
68.
Zurück zum Zitat Behera, A. K., Lu, B., & Ou, H. (2015). Characterization of shape and dimensional accuracy of incrementally formed titanium sheet parts with intermediate curvatures between two feature types. The International Journal of Advanced Manufacturing Technology, 1–13. https://doi.org/10.1007/s00170-015-7649-2 Behera, A. K., Lu, B., & Ou, H. (2015). Characterization of shape and dimensional accuracy of incrementally formed titanium sheet parts with intermediate curvatures between two feature types. The International Journal of Advanced Manufacturing Technology, 1–13. https://​doi.​org/​10.​1007/​s00170-015-7649-2
71.
Zurück zum Zitat Cui, X., Mo, J., Li, J., Xiao, X., Zhou, B., & Fang, J. (2016). Large-scale sheet deformation process by electromagnetic incremental forming combined with stretch forming. Journal of Materials Processing Technology, 237, 139–154.CrossRef Cui, X., Mo, J., Li, J., Xiao, X., Zhou, B., & Fang, J. (2016). Large-scale sheet deformation process by electromagnetic incremental forming combined with stretch forming. Journal of Materials Processing Technology, 237, 139–154.CrossRef
73.
Zurück zum Zitat Duflou, J., Callebaut, B., Verbert, J., & De Baerdemaeker, H. (2008). Improved SPIF performance through dynamic local heating. International Journal of Machine Tools and Manufacture, 48(5), 543–549.CrossRef Duflou, J., Callebaut, B., Verbert, J., & De Baerdemaeker, H. (2008). Improved SPIF performance through dynamic local heating. International Journal of Machine Tools and Manufacture, 48(5), 543–549.CrossRef
76.
Zurück zum Zitat Vanhove, H., Mohammadi, A., Guo, Y. S., & Duflou, J. R. (2014). High-speed single point incremental forming of an automotive aluminium alloy. Paper presented at the Key Engineering Materials. Vanhove, H., Mohammadi, A., Guo, Y. S., & Duflou, J. R. (2014). High-speed single point incremental forming of an automotive aluminium alloy. Paper presented at the Key Engineering Materials.
78.
Zurück zum Zitat Emmens, W. C., & Van den Boogaard, A. (2007). Strain in shear, and material behaviour in incremental forming. Paper presented at the Key Engineering Materials. Emmens, W. C., & Van den Boogaard, A. (2007). Strain in shear, and material behaviour in incremental forming. Paper presented at the Key Engineering Materials.
79.
Zurück zum Zitat Nguyen, D. T., Yang, S. H., Jung, D. W., Choi, T. H., & Kim, Y. S. (2011). Incremental sheet metal forming: Numerical simulation and rapid prototyping process to make an automobile white-body. Steel Research International, 7, 795–805. Nguyen, D. T., Yang, S. H., Jung, D. W., Choi, T. H., & Kim, Y. S. (2011). Incremental sheet metal forming: Numerical simulation and rapid prototyping process to make an automobile white-body. Steel Research International, 7, 795–805.
Metadaten
Titel
Potential of Incremental Forming Techniques for Aerospace Applications
verfasst von
Ricardo J. Alves de Sousa
D. G. Afonso
F. Rubino
A. K. Behera
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-91873-6_12

    Premium Partner