Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Potential Use of Polymeric Particles for the Regulation of Plant Growth

verfasst von : Anderson E. S. Pereira, Bruno T. Sousa, María J. Iglesias, Vera A. Alvarez, Claudia A. Casalongué, Halley C. Oliveira, Leonardo F. Fraceto

Erschienen in: Polymers for Agri-Food Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Plant growth regulators (PGRs) are molecules widely applied in the agriculture, leading to increased crop yield and improved quality of agricultural products. These compounds act as plant hormones, affecting the plant hormonal homeostasis, and thus control plant growth and development. Recently, the development of polymer-based modified release systems for PGRs has emerged as a promising alternative for increasing the efficacy of these compounds. This review will focus on polymeric particles that are used as carrier systems for PGRs, allowing their controlled release and protecting them from degradation. Successful examples include the phytohormone gibberellic acid(GA3)-loaded nanoparticles, which showed higher efficacy than the non-nano active ingredient in promoting seed germination and seedling growth, and salicylic acid (SA) and nitric oxide (NO)-releasing nanoparticles as effective plant protection agents against stresses. Polymeric nanomaterials per se such as chitosan (Cs) can also alter plant signaling pathways and promote plant growth and development. Despite their great potential in improving the plant production with less damage to the environment, relatively few studies have focused on the use of these nanomaterials for the development of modified release systems for PGRs. In this scenario, this review discusses on the major advances and obstacles in the area.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Baldwin, E. A. (1994). Edible coatings for fresh fruits and vegetables: Past, present, and future. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 25–64). Lancaster: Technomic Publishing. Baldwin, E. A. (1994). Edible coatings for fresh fruits and vegetables: Past, present, and future. In J. M. Krochta, E. A. Baldwin, & M. O. Nisperos-Carriedo (Eds.), Edible coatings and films to improve food quality (pp. 25–64). Lancaster: Technomic Publishing.
Zurück zum Zitat Basra AS (2000) Plant growth regulators in agriculture and horticulture: Their role and commercial uses. Plant growth Regul Agric Hortic their role Commer uses. Basra AS (2000) Plant growth regulators in agriculture and horticulture: Their role and commercial uses. Plant growth Regul Agric Hortic their role Commer uses.
Zurück zum Zitat Behboudi, F., Tahmasebi Sarvestani, Z., Kassaee, M. Z., Modares Sanavi, S. A. M., Sorooshzadeh, A., & Ahmadi, S. B. (2018). Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. Journal of Water and Environmental Nanotechnology, 3(1), 22–39. https://doi.org/10.22090/jwent.2018.01.003.CrossRef Behboudi, F., Tahmasebi Sarvestani, Z., Kassaee, M. Z., Modares Sanavi, S. A. M., Sorooshzadeh, A., & Ahmadi, S. B. (2018). Evaluation of chitosan nanoparticles effects on yield and yield components of barley (Hordeum vulgare L.) under late season drought stress. Journal of Water and Environmental Nanotechnology, 3(1), 22–39. https://​doi.​org/​10.​22090/​jwent.​2018.​01.​003.CrossRef
Zurück zum Zitat Camara, M. C., et al. (2018). Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta, 248, 1049–1062.CrossRef Camara, M. C., et al. (2018). Current advances in gibberellic acid (GA3) production, patented technologies and potential applications. Planta, 248, 1049–1062.CrossRef
Zurück zum Zitat Cardoso, C., et al. (2011). AIB e substratos no enraizamento de estacas de pessegueiro ‘Okinawa’ coletadas no outono. Semina: Ciências Agrárias, 32, 1307–1314. Cardoso, C., et al. (2011). AIB e substratos no enraizamento de estacas de pessegueiro ‘Okinawa’ coletadas no outono. Semina: Ciências Agrárias, 32, 1307–1314.
Zurück zum Zitat Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports, 5(15195). https://doi.org/10.1038/srep15195. Chandra, S., Chakraborty, N., Dasgupta, A., Sarkar, J., Panda, K., & Acharya, K. (2015). Chitosan nanoparticles: A positive modulator of innate immune responses in plants. Scientific Reports, 5(15195). https://​doi.​org/​10.​1038/​srep15195.
Zurück zum Zitat Corredor, E., Testillano, P. S., Coronado, M.-J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C., Ibarra, M. R., de la Fuente, J. M., Rubiales, D., Pérez-de-Luque, A., & Risueño, M.-C. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biology, 9, 45. https://doi.org/10.1186/1471-2229-9-45.CrossRefPubMedPubMedCentral Corredor, E., Testillano, P. S., Coronado, M.-J., González-Melendi, P., Fernández-Pacheco, R., Marquina, C., Ibarra, M. R., de la Fuente, J. M., Rubiales, D., Pérez-de-Luque, A., & Risueño, M.-C. (2009). Nanoparticle penetration and transport in living pumpkin plants: in situ subcellular identification. BMC Plant Biology, 9, 45. https://​doi.​org/​10.​1186/​1471-2229-9-45.CrossRefPubMedPubMedCentral
Zurück zum Zitat Crespy, D., Stark, M., Hoffmann-Richter, C., Ziener, U., & Landfester, K. (2007). Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules?, 40(9), 3122–3135. https://doi.org/10.1021/ma0621932.CrossRef Crespy, D., Stark, M., Hoffmann-Richter, C., Ziener, U., & Landfester, K. (2007). Polymeric nanoreactors for hydrophilic reagents synthesized by interfacial polycondensation on miniemulsion droplets. Macromolecules?, 40(9), 3122–3135. https://​doi.​org/​10.​1021/​ma0621932.CrossRef
Zurück zum Zitat Dibax, R., de Alcantara, G. B., Machado, M. P., Filho, J. C. B., & Oliveira, R. A. de. (2013). Protocol optimization and histological analysis of in vitro plant regeneration of RB92579 and RB93509 sugarcane cultivars. Ciência Rural, 43, 49–54.CrossRef Dibax, R., de Alcantara, G. B., Machado, M. P., Filho, J. C. B., & Oliveira, R. A. de. (2013). Protocol optimization and histological analysis of in vitro plant regeneration of RB92579 and RB93509 sugarcane cultivars. Ciência Rural, 43, 49–54.CrossRef
Zurück zum Zitat Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 102, 180–196.CrossRef Enders, T. A., & Strader, L. C. (2015). Auxin activity: Past, present, and future. American Journal of Botany, 102, 180–196.CrossRef
Zurück zum Zitat Espinosa, M. E. Á., et al. (2017). Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction. Journal of Plant Physiology, 209, 11–19.CrossRef Espinosa, M. E. Á., et al. (2017). Early histological, hormonal, and molecular changes during pineapple (Ananas comosus (L.) Merrill) artificial flowering induction. Journal of Plant Physiology, 209, 11–19.CrossRef
Zurück zum Zitat Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces. B, Biointerfaces, 90, 21–27.CrossRef Fan, W., Yan, W., Xu, Z., & Ni, H. (2012). Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces. B, Biointerfaces, 90, 21–27.CrossRef
Zurück zum Zitat Grozeff, G., et al. (2010). 1-Methyl cyclopropene extends postharvest life of spinach leaves. Postharvest Biology and Technology, 55, 182–185.CrossRef Grozeff, G., et al. (2010). 1-Methyl cyclopropene extends postharvest life of spinach leaves. Postharvest Biology and Technology, 55, 182–185.CrossRef
Zurück zum Zitat Gutiérrez, T. J., & Álvarez, K. (2017). Chapter 6. Biopolymers as microencapsulation materials in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 2 (Vol. 2017, pp. 296–322). Bentham Science Publishers. EE.UU. ISBN: 978–1–68108-545-6. eISBN: 978–1–68108-544-9. https://doi.org/10.2174/9781681085449117010009. Gutiérrez, T. J., & Álvarez, K. (2017). Chapter 6. Biopolymers as microencapsulation materials in the food industry. In M. Masuelli & D. Renard (Eds.), Advances in physicochemical properties of biopolymers: Part 2 (Vol. 2017, pp. 296–322). Bentham Science Publishers. EE.UU. ISBN: 978–1–68108-545-6. eISBN: 978–1–68108-544-9. https://​doi.​org/​10.​2174/​9781681085449117​010009.
Zurück zum Zitat Hussain, I., Ahmad, S., Amjad, M., & Ahmed, R. (2015). Thephon application at kimri stage accelerates the fruit maturation period and improves phytonutrients status (Hillawi and Khadrawi (c.v.)) of date palm fruit. 52(1), 10. Hussain, I., Ahmad, S., Amjad, M., & Ahmed, R. (2015). Thephon application at kimri stage accelerates the fruit maturation period and improves phytonutrients status (Hillawi and Khadrawi (c.v.)) of date palm fruit. 52(1), 10.
Zurück zum Zitat Kong, D. D., & Cao, Y. S. (2018). Preparation and characterization of indole-3-butyric acid nanospheres for improving its stability and utilization. Materials Science and Engineering C – Materials for Biological Applications, 89, 175–181.CrossRef Kong, D. D., & Cao, Y. S. (2018). Preparation and characterization of indole-3-butyric acid nanospheres for improving its stability and utilization. Materials Science and Engineering C – Materials for Biological Applications, 89, 175–181.CrossRef
Zurück zum Zitat Kokina, I., Jahundoviča, I., Mickeviča, I., Jermaļonoka, M., Strautiņš, J., Popovs, S., Ogurcovs, A., Sledevskis, E., Polyakov, B., & Gerbreders, V. (2017). Target transportation of auxin on mesoporous Au/SiO2 Nanoparticles as a method for somaclonal variation increasing in flax (L. usitatissimum L.). Journal of Nanomaterials, 2017, 1–9. https://doi.org/10.1155/2017/7143269.CrossRef Kokina, I., Jahundoviča, I., Mickeviča, I., Jermaļonoka, M., Strautiņš, J., Popovs, S., Ogurcovs, A., Sledevskis, E., Polyakov, B., & Gerbreders, V. (2017). Target transportation of auxin on mesoporous Au/SiO2 Nanoparticles as a method for somaclonal variation increasing in flax (L. usitatissimum L.). Journal of Nanomaterials, 2017, 1–9. https://​doi.​org/​10.​1155/​2017/​7143269.CrossRef
Zurück zum Zitat López-Moreno, M. L., Cedeño-Mattei, Y., Bailón-Ruiz, S. J., Vazquez-Nuñez, E., Hernandez-Viezcas, J. A., Perales-Pérez, O. J., Dela Rosa, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Environmental behavior of coated NMs: Physicochemical aspects and plant interactions. Journal of Hazardous Materials, 347, 196–217. https://doi.org/10.1016/j.jhazmat.2017.12.058.CrossRefPubMed López-Moreno, M. L., Cedeño-Mattei, Y., Bailón-Ruiz, S. J., Vazquez-Nuñez, E., Hernandez-Viezcas, J. A., Perales-Pérez, O. J., Dela Rosa, G., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2018). Environmental behavior of coated NMs: Physicochemical aspects and plant interactions. Journal of Hazardous Materials, 347, 196–217. https://​doi.​org/​10.​1016/​j.​jhazmat.​2017.​12.​058.CrossRefPubMed
Zurück zum Zitat Martin-Saldaña, S., et al. (2018). Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: Recycling shrimp fishing industry waste. Carbohydrate Polymers, 200, 321–331.CrossRef Martin-Saldaña, S., et al. (2018). Salicylic acid loaded chitosan microparticles applied to lettuce seedlings: Recycling shrimp fishing industry waste. Carbohydrate Polymers, 200, 321–331.CrossRef
Zurück zum Zitat Martín-Saldaña, S., Palao-Suay, R., Trinidad, A., Aguilar, M. R., Ramírez-Camacho, R., & San Román, J. (2016). Otoprotective properties of 6α-methylprednisolone-loaded nanoparticles against cisplatin: In vitro and in vivo correlation. Nanomedicine: Nanotechnology, Biology and Medicine, 12(4), 965–976. https://doi.org/10.1016/j.nano.2015.12.367.CrossRef Martín-Saldaña, S., Palao-Suay, R., Trinidad, A., Aguilar, M. R., Ramírez-Camacho, R., & San Román, J. (2016). Otoprotective properties of 6α-methylprednisolone-loaded nanoparticles against cisplatin: In vitro and in vivo correlation. Nanomedicine: Nanotechnology, Biology and Medicine, 12(4), 965–976. https://​doi.​org/​10.​1016/​j.​nano.​2015.​12.​367.CrossRef
Zurück zum Zitat Peixoto, C. P., & Passos, A. R. (2011). Ação da giberelina em sementes pré-embebidas de mamoneira. Comunicata Scientiae, 6. Peixoto, C. P., & Passos, A. R. (2011). Ação da giberelina em sementes pré-embebidas de mamoneira. Comunicata Scientiae, 6.
Zurück zum Zitat Pereira, A. E. S., Sandoval-Herrera, I. E., Zavala-Betancourt, S. A., Oliveira, H. C., Ledezma-Pérez, A. S., Romero, J., & Fraceto, L. F. (2017a). γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate Polymers, 157, 1862–1873. https://doi.org/10.1016/j.carbpol.2016.11.073.CrossRefPubMed Pereira, A. E. S., Sandoval-Herrera, I. E., Zavala-Betancourt, S. A., Oliveira, H. C., Ledezma-Pérez, A. S., Romero, J., & Fraceto, L. F. (2017a). γ-Polyglutamic acid/chitosan nanoparticles for the plant growth regulator gibberellic acid: Characterization and evaluation of biological activity. Carbohydrate Polymers, 157, 1862–1873. https://​doi.​org/​10.​1016/​j.​carbpol.​2016.​11.​073.CrossRefPubMed
Zurück zum Zitat Petri, J. L., Leite, G. B., & Argenta, L. C. (2007). Eficácia do tratamento de AVG no controle da queda e maturação dos frutos de maçã, cultivar imperial gala. Revista Brasileira de Fruticultura, 29, 239–244.CrossRef Petri, J. L., Leite, G. B., & Argenta, L. C. (2007). Eficácia do tratamento de AVG no controle da queda e maturação dos frutos de maçã, cultivar imperial gala. Revista Brasileira de Fruticultura, 29, 239–244.CrossRef
Zurück zum Zitat Revell P.A. (2006) The biological effect of nanoparticles, Nanotechnology perceptions? 2:283–229. Revell P.A. (2006) The biological effect of nanoparticles, Nanotechnology perceptions? 2:283–229.
Zurück zum Zitat Rodrigues, & Fioreze. (2015). Reguladores são, para muitos cultivos, indispensáveis ao alcance de bons níveis. Fisiologia compostos, 5. Rodrigues, & Fioreze. (2015). Reguladores são, para muitos cultivos, indispensáveis ao alcance de bons níveis. Fisiologia compostos, 5.
Zurück zum Zitat Schulz, B., & Segobye, K. (2016). 2,4-D transport and herbicide resistance in weeds. Journal of Experimental Botany, 67, 3177–3179.CrossRef Schulz, B., & Segobye, K. (2016). 2,4-D transport and herbicide resistance in weeds. Journal of Experimental Botany, 67, 3177–3179.CrossRef
Zurück zum Zitat Seabra, & Oliveira. (2016). How nitric oxide donors can protect plants in a changing environment: What we know so far and perspectives. AIMS Molecular Science, 3, 692–718.CrossRef Seabra, & Oliveira. (2016). How nitric oxide donors can protect plants in a changing environment: What we know so far and perspectives. AIMS Molecular Science, 3, 692–718.CrossRef
Zurück zum Zitat Steffens, C. A., do Amarante, C. V. T., Chechi, R., Silveira, J. P. G., & Brackmann, A. (2009). Aplicação pré-colheita de reguladores vegetais visando retardar a maturação de ameixas ‘Laetitia. Ciência Rural, 39, 1369–1373.CrossRef Steffens, C. A., do Amarante, C. V. T., Chechi, R., Silveira, J. P. G., & Brackmann, A. (2009). Aplicação pré-colheita de reguladores vegetais visando retardar a maturação de ameixas ‘Laetitia. Ciência Rural, 39, 1369–1373.CrossRef
Zurück zum Zitat Valletta, A., Chronopoulou, L., Palocci, C., Baldan, B., Donati, L., & Pasqua, G. (2014). Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 16(2744). https://doi.org/10.1007/s11051-014-2744-0. Valletta, A., Chronopoulou, L., Palocci, C., Baldan, B., Donati, L., & Pasqua, G. (2014). Poly(lactic-co-glycolic) acid nanoparticles uptake by Vitis vinifera and grapevine-pathogenic fungi. Journal of Nanoparticle Research, 16(2744). https://​doi.​org/​10.​1007/​s11051-014-2744-0.
Zurück zum Zitat Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwarid, M., Sharmad, N., & Sahid, S. V. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127. https://doi.org/10.1016/j.plaphy.2016.09.004.CrossRefPubMed Venkatachalam, P., Priyanka, N., Manikandan, K., Ganeshbabu, I., Indiraarulselvi, P., Geetha, N., Muralikrishna, K., Bhattacharya, R. C., Tiwarid, M., Sharmad, N., & Sahid, S. V. (2017). Enhanced plant growth promoting role of phycomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiology and Biochemistry, 110, 118–127. https://​doi.​org/​10.​1016/​j.​plaphy.​2016.​09.​004.CrossRefPubMed
Metadaten
Titel
Potential Use of Polymeric Particles for the Regulation of Plant Growth
verfasst von
Anderson E. S. Pereira
Bruno T. Sousa
María J. Iglesias
Vera A. Alvarez
Claudia A. Casalongué
Halley C. Oliveira
Leonardo F. Fraceto
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-19416-1_4