Skip to main content
Erschienen in: Production Engineering 3-4/2018

20.01.2018 | Production Process

Powder recycling in laser beam melting: strategies, consumption modeling and influence on resource efficiency

verfasst von: Max Lutter-Günther, Christian Gebbe, Tobias Kamps, Christian Seidel, Gunther Reinhart

Erschienen in: Production Engineering | Ausgabe 3-4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Laser beam melting (LBM) is a powder-bed and laser-based additive manufacturing technology that is increasingly used for the production of metal components. For a sustainability assessment of a production technology, the global warming potential (GWP) can be used, which is commonly referred to as CO2-footprint. Looking at the resource demand of LBM, material losses and powder recycling play a significant role. In the LBM build-up process, powder material is selectively solidified, generating the part layer-by-layer. The non-solidified powder material can be recycled, which is beneficial to the resource efficiency of the process. Due to considerations regarding powder quality degradation, the number of reuse powder cycles in industrial practice varies significantly, ranging from only one to more than several dozen cycles. Similarly, material losses during the process have shown to differ between LBM machines. However, previous approaches for LBM resource efficiency assessment lack a detailed representation of these two factors. In this study, two interacting models are introduced for the evaluation of the GWP of LBM parts. Firstly, a powder reuse cycle calculation model is described. Secondly, a LBM resource and energy consumption model based on the CO2PE!-methodology is put forward with a refined focus on powder recycling and material losses. The models are implemented and validated based on three LBM production use cases including the acquisition of resource and energy consumption data for three commercial LBM machines. GWP-impact values are used from the ProBas database, provided by the German Federal Environmental Agency. Based on the results regarding the three LBM use cases, the role of powder recycling and material losses on the GWP-impact of LBM during the production phase is discussed. The results show that the number of attainable powder reuse cycles lies around 35 cycles (ranging from 1 to 117 cycles) for the analyzed LBM production scenarios when applying the suggested powder recycling strategy. If powder is not recycled and only used once, more than 90% of the powder batch might be discarded. The volume-specific CO2-equivalent of 0.175 kgCO2eq/cm3 can be used as a rule of thumb for a quick estimation of the GWP for LBM parts made from Al-alloy or steel. Electric energy consumption constitutes for the largest share of GWP-impact, followed by the solidified metal powder and the occurring powder losses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Wohlers Report (2017) 3D printing and additive manufacturing state of the industry: annual worldwide progress report. ISBN 978-0-9913332-3-3 Wohlers Report (2017) 3D printing and additive manufacturing state of the industry: annual worldwide progress report. ISBN 978-0-9913332-3-3
6.
Zurück zum Zitat Kellens K, Dewulf W, Overcash M et al (2012) Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: methodology description. Int J Life Cycle Assess 17(1):69–78. https://doi.org/10.1007/s11367-011-0340-4 CrossRef Kellens K, Dewulf W, Overcash M et al (2012) Methodology for systematic analysis and improvement of manufacturing unit process life-cycle inventory (UPLCI)—CO2PE! initiative (cooperative effort on process emissions in manufacturing). Part 1: methodology description. Int J Life Cycle Assess 17(1):69–78. https://​doi.​org/​10.​1007/​s11367-011-0340-4 CrossRef
7.
Zurück zum Zitat Baumers M, Tuck C, Wildman R et al (2012) Combined build-time, energy consumption and cost estimation for direct metal laser sintering. In: Proceedings of solid freeform fabrication symposium Baumers M, Tuck C, Wildman R et al (2012) Combined build-time, energy consumption and cost estimation for direct metal laser sintering. In: Proceedings of solid freeform fabrication symposium
10.
Zurück zum Zitat Walachowicz F, Bernsdorf I et al (2017) Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing. J Ind Ecol 21:S203–S215. https://doi.org/10.1111/jiec.12637 CrossRef Walachowicz F, Bernsdorf I et al (2017) Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing. J Ind Ecol 21:S203–S215. https://​doi.​org/​10.​1111/​jiec.​12637 CrossRef
11.
Zurück zum Zitat Barclift M, Joshi S, Simpson T et al (eds) (2016) Cost modeling and depreciation for reused powder feedstock in powder bed fusion additive manufacturing. In: Proceedings of the 27th annual international solid freeform fabrication symposium—an additive manufacturing conference. Austin, TX, USA Barclift M, Joshi S, Simpson T et al (eds) (2016) Cost modeling and depreciation for reused powder feedstock in powder bed fusion additive manufacturing. In: Proceedings of the 27th annual international solid freeform fabrication symposium—an additive manufacturing conference. Austin, TX, USA
12.
Zurück zum Zitat Seyda V, Herzog D, Emmelmann C et al (2014) On the treatment of Ti-6Al-4V powder in laser melting. In: Proceedings of Fraunhofer direct digital manufacturing conference Seyda V, Herzog D, Emmelmann C et al (2014) On the treatment of Ti-6Al-4V powder in laser melting. In: Proceedings of Fraunhofer direct digital manufacturing conference
14.
Zurück zum Zitat O'Leary R, Setchi R, Prickett P et al (eds) (2015) An investigation into the recycling of Ti-6Al-4V powder used within SLM to improve sustainability. SDM'2015: 2nd international conference on sustainable design and manufacturing, Seville, Spain, 12–14 April 2015 O'Leary R, Setchi R, Prickett P et al (eds) (2015) An investigation into the recycling of Ti-6Al-4V powder used within SLM to improve sustainability. SDM'2015: 2nd international conference on sustainable design and manufacturing, Seville, Spain, 12–14 April 2015
15.
Zurück zum Zitat Kellens K, Yasa E, Renaldi et al (2011) Energy and resource efficiency of SLS/SLM processes. In: Proceedings of solid freeform fabrication symposium Kellens K, Yasa E, Renaldi et al (2011) Energy and resource efficiency of SLS/SLM processes. In: Proceedings of solid freeform fabrication symposium
18.
Zurück zum Zitat Meiners W (1999) Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Shaker, Aachen Meiners W (1999) Direktes selektives Laser-Sintern einkomponentiger metallischer Werkstoffe. Shaker, Aachen
19.
Zurück zum Zitat Uhlenwinkel V, Ziesenis J, Bauckhage K (2002) Symposium spray forming. Kolloquium des SFB 372, vol 6. Univ; Books on Demand GmbH, Bremen, Norderstedt Uhlenwinkel V, Ziesenis J, Bauckhage K (2002) Symposium spray forming. Kolloquium des SFB 372, vol 6. Univ; Books on Demand GmbH, Bremen, Norderstedt
20.
Zurück zum Zitat Lutter-Günther M, Horn M, Seidel C, Reinhart G (2017) Influence of particle size distribution on powder flowability and part properties in laser beam melting. In: Rapid.Tech—international trade show and conference for additive manufacturing, pp 297–311 https://doi.org/10.3139/9783446454606.022 Lutter-Günther M, Horn M, Seidel C, Reinhart G (2017) Influence of particle size distribution on powder flowability and part properties in laser beam melting. In: Rapid.Tech—international trade show and conference for additive manufacturing, pp 297–311 https://​doi.​org/​10.​3139/​9783446454606.​022
21.
Zurück zum Zitat Umwelt Bundesamt (2017) ProBas Database (Umwelt Bundesamt ProBas Database 2017) Umwelt Bundesamt (2017) ProBas Database (Umwelt Bundesamt ProBas Database 2017)
Metadaten
Titel
Powder recycling in laser beam melting: strategies, consumption modeling and influence on resource efficiency
verfasst von
Max Lutter-Günther
Christian Gebbe
Tobias Kamps
Christian Seidel
Gunther Reinhart
Publikationsdatum
20.01.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Production Engineering / Ausgabe 3-4/2018
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-018-0790-7

Weitere Artikel der Ausgabe 3-4/2018

Production Engineering 3-4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.