Skip to main content
Erschienen in: Wireless Networks 3/2018

11.10.2016

Power allocation and effective capacity of AF successive relays

verfasst von: Mohammad Lari

Erschienen in: Wireless Networks | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the relay based telecommunications with K relays between the source and destination, \(K+1\) time or frequency slots are required for a single frame transmission. However, without the relays, only one time or frequency slot is used for a single frame transmission. Therefore, despite the benefits of relaying systems, this type of communications is not efficient from the spectral efficiency viewpoint. One solution to reduce this issue might be the full-duplex (FD) relays. An old technique which is reconsidered recently to improve the spectral efficiency of telecommunication systems. However, FD relays have a certain complexity, so, some similar techniques such as successive relays with nearly the same performance but less complexity is taken into account now. In successive relaying systems, two relays between the source and destination are employed which receive the transmitted frames from the source and relay it to the destination successively. This structure generally acts like an FD relays. In this paper, the effective capacity performance of an amplify and forward successive relaying systems with power allocation strategy at the relays are studied perfectly. However, while the inter-rely interference (IRI) between two successive relays has to be managed well, the power allocation and the effective capacity is derived under different assumptions about the IRI. In this way, we assume weak or strong, short or long-term constraints on the IRI. Then we extract the optimal transmitted power at the relay to maximize the effective capacity under these constraints.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For a complete review of successive relaying, please refer to [29].
 
2
The complete set of symbols can be used for channel estimation, higher order of diversity or..., however, the details and method of using IRI is not our concern here in this paper.
 
3
The proof of (21) and (22) is very similar to Appendix 1.
 
Literatur
1.
Zurück zum Zitat Pashazadeh, M., & Tabataba, F. S. (2016). Impact of loop-back interference and channel estimation errors on full-duplex relay networks. Wireless Networks. doi:10.1007/s11276-016-1205-3. Pashazadeh, M., & Tabataba, F. S. (2016). Impact of loop-back interference and channel estimation errors on full-duplex relay networks. Wireless Networks. doi:10.​1007/​s11276-016-1205-3.
2.
Zurück zum Zitat Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 2–10.CrossRef Zhang, Z., Chai, X., Long, K., Vasilakos, A. V., & Hanzo, L. (2015). Full duplex techniques for 5G networks: Self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5), 2–10.CrossRef
3.
Zurück zum Zitat Liu, G., Yu, F. R., Ji, H., & Leung, V. C. M. (2015). In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials, 17(2), 500–524.CrossRef Liu, G., Yu, F. R., Ji, H., & Leung, V. C. M. (2015). In-band full-duplex relaying: A survey, research issues and challenges. IEEE Communications Surveys & Tutorials, 17(2), 500–524.CrossRef
4.
Zurück zum Zitat Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.CrossRef Sabharwal, A., Schniter, P., Guo, D., Bliss, D. W., Rangarajan, S., & Wichman, R. (2014). In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9), 1637–1652.CrossRef
5.
Zurück zum Zitat Pérez, D. L., Chu, X., Vasilakos, A. V., & Claussen, H. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking (TON), 21(4), 1145–1158.CrossRef Pérez, D. L., Chu, X., Vasilakos, A. V., & Claussen, H. (2013). On distributed and coordinated resource allocation for interference mitigation in self-organizing LTE networks. IEEE/ACM Transactions on Networking (TON), 21(4), 1145–1158.CrossRef
6.
Zurück zum Zitat Pérez, D. L., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.CrossRef Pérez, D. L., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communications, 32(2), 333–344.CrossRef
7.
Zurück zum Zitat Duarte, M. (2012). Full-duplex wireless: Design, implementation and characterization. Ph.D. dissertation, Rice University, Houston, TX, USA. Duarte, M. (2012). Full-duplex wireless: Design, implementation and characterization. Ph.D. dissertation, Rice University, Houston, TX, USA.
8.
Zurück zum Zitat Riihonen, T., Werner, S., & Wichman, R. (2011). Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Transactions on Signal Processing, 59(12), 5983–5993.MathSciNetCrossRef Riihonen, T., Werner, S., & Wichman, R. (2011). Mitigation of loopback self-interference in full-duplex MIMO relays. IEEE Transactions on Signal Processing, 59(12), 5983–5993.MathSciNetCrossRef
9.
Zurück zum Zitat Rodríguez, L. J., Tran, N. H., & Le-Ngoc, T. (2014). Optimal power allocation and capacity of full-duplex AF relaying under residual self-interference. IEEE Wireless Communications Letters, 3(2), 233–236.CrossRef Rodríguez, L. J., Tran, N. H., & Le-Ngoc, T. (2014). Optimal power allocation and capacity of full-duplex AF relaying under residual self-interference. IEEE Wireless Communications Letters, 3(2), 233–236.CrossRef
10.
Zurück zum Zitat Ding, Z., Krikidis, I., Rong, B., Thompson, J., Wang, C., & Yang, S. (2012). On combating the half-duplex constraint in modern cooperative networks: Protocols and techniques. IEEE Wireless Communications, 19(6), 20–27.CrossRef Ding, Z., Krikidis, I., Rong, B., Thompson, J., Wang, C., & Yang, S. (2012). On combating the half-duplex constraint in modern cooperative networks: Protocols and techniques. IEEE Wireless Communications, 19(6), 20–27.CrossRef
11.
Zurück zum Zitat Zhang, S., Zhou, Q. F., Kai, C., & Zhang, W. (2014). Full diversity physical-layer network coding in two-way relay channels with multiple antennas. IEEE Transactions on Wireless Communications, 13(8), 4273–4282.CrossRef Zhang, S., Zhou, Q. F., Kai, C., & Zhang, W. (2014). Full diversity physical-layer network coding in two-way relay channels with multiple antennas. IEEE Transactions on Wireless Communications, 13(8), 4273–4282.CrossRef
12.
Zurück zum Zitat Fan, Y., Wang, C., Thompson, J., & Poor, H. V. (2007). Recovering multiplexing loss through successive relaying using repetition coding. IEEE Transactions on Wireless Communications, 6(12), 4484–4493.CrossRef Fan, Y., Wang, C., Thompson, J., & Poor, H. V. (2007). Recovering multiplexing loss through successive relaying using repetition coding. IEEE Transactions on Wireless Communications, 6(12), 4484–4493.CrossRef
13.
Zurück zum Zitat Wang, C., Fan, Y., Thompson, J., & Poor, H. V. (2009). A comprehensive study of repetition-coded protocols in multi-user multi-relay networks. IEEE Transactions on Wireless Communications, 8(8), 4329–4339.CrossRef Wang, C., Fan, Y., Thompson, J., & Poor, H. V. (2009). A comprehensive study of repetition-coded protocols in multi-user multi-relay networks. IEEE Transactions on Wireless Communications, 8(8), 4329–4339.CrossRef
14.
Zurück zum Zitat Zhao, Y., Adve, R., & Lim, T. J. (2007). Improving amplify-and-forward relay networks: optimal power allocation versus selection. IEEE Transactions on Wireless Communications, 6(8), 3114–3123. Zhao, Y., Adve, R., & Lim, T. J. (2007). Improving amplify-and-forward relay networks: optimal power allocation versus selection. IEEE Transactions on Wireless Communications, 6(8), 3114–3123.
15.
Zurück zum Zitat Rodríguez, L. J., Tran, N. H., Helmy, A., & Le-Ngoc, T. (2013). Optimal power adaptation for cooperative AF relaying with channel side information. IEEE Transactions on Vehicular Technology, 62(7), 3164–3174.CrossRef Rodríguez, L. J., Tran, N. H., Helmy, A., & Le-Ngoc, T. (2013). Optimal power adaptation for cooperative AF relaying with channel side information. IEEE Transactions on Vehicular Technology, 62(7), 3164–3174.CrossRef
16.
Zurück zum Zitat Kim, H., Lim, S., Wang, H., & Hong, D. (2012). Optimal power allocation and outage analysis for cognitive full duplex relay systems. IEEE Transactions on Wireless Communications, 11(10), 3754–3795.CrossRef Kim, H., Lim, S., Wang, H., & Hong, D. (2012). Optimal power allocation and outage analysis for cognitive full duplex relay systems. IEEE Transactions on Wireless Communications, 11(10), 3754–3795.CrossRef
17.
Zurück zum Zitat Emadi, M. J., Davoodi, A. G., & Aref, M. R. (2013). Analytical power allocation for a full-duplex decodeand-forward relay channel. IET Communications, 7(13), 1338–1347.CrossRef Emadi, M. J., Davoodi, A. G., & Aref, M. R. (2013). Analytical power allocation for a full-duplex decodeand-forward relay channel. IET Communications, 7(13), 1338–1347.CrossRef
18.
Zurück zum Zitat Yu, B., Yang, L., Cheng, X., & Cao, R. (2015). Power and location optimization for full-duplex decode-and-forward relaying. IEEE Transactions on Communications, 63(12), 4743–4753.CrossRef Yu, B., Yang, L., Cheng, X., & Cao, R. (2015). Power and location optimization for full-duplex decode-and-forward relaying. IEEE Transactions on Communications, 63(12), 4743–4753.CrossRef
19.
Zurück zum Zitat Farhadi, G., & Beaulieu, N. C. (2009). Power-optimized amplify-and-forward multi-hop relaying systems. IEEE Transactions on Wireless Communications, 8(9), 4634–4643.CrossRef Farhadi, G., & Beaulieu, N. C. (2009). Power-optimized amplify-and-forward multi-hop relaying systems. IEEE Transactions on Wireless Communications, 8(9), 4634–4643.CrossRef
20.
Zurück zum Zitat Mohammadi, M., Sadeghi, P., & Ardebilipour, M. (2013). Node and symbol power allocation in time-varying amplify-and-forward dual-hop relay channels. IEEE Transactions on Vehicular Technology, 62(1), 432–439.CrossRef Mohammadi, M., Sadeghi, P., & Ardebilipour, M. (2013). Node and symbol power allocation in time-varying amplify-and-forward dual-hop relay channels. IEEE Transactions on Vehicular Technology, 62(1), 432–439.CrossRef
21.
Zurück zum Zitat Hua, Y. (2010). An overview of beamforming and power allocation for MIMO relays in MILCOM (pp. 375–380). San Jose, CA, USA. Hua, Y. (2010). An overview of beamforming and power allocation for MIMO relays in MILCOM (pp. 375–380). San Jose, CA, USA.
22.
Zurück zum Zitat Riihonen, T., Werner, S., & Wichman, R. (2011). Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9), 3074–3085.CrossRef Riihonen, T., Werner, S., & Wichman, R. (2011). Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9), 3074–3085.CrossRef
23.
Zurück zum Zitat Li, L., Wang, L., & Hanzo, L. (2012). Differential interference suppression aided three-stage concatenated successive relaying. IEEE Transactions on Communications, 60(8), 2146–2155.CrossRef Li, L., Wang, L., & Hanzo, L. (2012). Differential interference suppression aided three-stage concatenated successive relaying. IEEE Transactions on Communications, 60(8), 2146–2155.CrossRef
24.
Zurück zum Zitat Lu, H., Hong, P., & Xue, K. (2014). Generalized interrelay interference cancelation for two-path successive relaying systems. IEEE Transactions on Vehicular Technology, 63(8), 4113–4118.CrossRef Lu, H., Hong, P., & Xue, K. (2014). Generalized interrelay interference cancelation for two-path successive relaying systems. IEEE Transactions on Vehicular Technology, 63(8), 4113–4118.CrossRef
25.
Zurück zum Zitat Ji, Y., Han, C., Wang, A., & Shi, H. (2014). Partial inter-relay interference cancellation in two path successive relay network. IEEE Communications Letters, 18(3), 451–454.CrossRef Ji, Y., Han, C., Wang, A., & Shi, H. (2014). Partial inter-relay interference cancellation in two path successive relay network. IEEE Communications Letters, 18(3), 451–454.CrossRef
26.
Zurück zum Zitat Zhang, R. (2009). On achievable rates of two-path successive relaying. IEEE Transactions on Communications, 57(10), 2914–2917.CrossRef Zhang, R. (2009). On achievable rates of two-path successive relaying. IEEE Transactions on Communications, 57(10), 2914–2917.CrossRef
27.
Zurück zum Zitat Gupta, S., Zhang, R., & Hanzo, L. (2016). Throughput maximization for a buffer-aided successive relaying network employing energy harvesting. IEEE Transactions on Vehicular Technology, 65(8), 6758–6765.CrossRef Gupta, S., Zhang, R., & Hanzo, L. (2016). Throughput maximization for a buffer-aided successive relaying network employing energy harvesting. IEEE Transactions on Vehicular Technology, 65(8), 6758–6765.CrossRef
28.
Zurück zum Zitat Zhai, C., Zhang, W., & Ching, P. C. (2013). Cooperative spectrum sharing based on two-path successive relaying. IEEE Transactions on Communications, 61(6), 2260–2270.CrossRef Zhai, C., Zhang, W., & Ching, P. C. (2013). Cooperative spectrum sharing based on two-path successive relaying. IEEE Transactions on Communications, 61(6), 2260–2270.CrossRef
29.
Zurück zum Zitat Li, L., Poor, H. V., & Hanzo, L. (2015). Non-coherent successive relaying and cooperation: Principles, designs and applications. IEEE Communications Surveys & Tutorials, 17(3), 1708–1737.CrossRef Li, L., Poor, H. V., & Hanzo, L. (2015). Non-coherent successive relaying and cooperation: Principles, designs and applications. IEEE Communications Surveys & Tutorials, 17(3), 1708–1737.CrossRef
30.
Zurück zum Zitat Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2012). Characterization of effective capacity in AF relay systems. IEICE Electronics Express, 9(7), 679–684.CrossRef Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2012). Characterization of effective capacity in AF relay systems. IEICE Electronics Express, 9(7), 679–684.CrossRef
31.
Zurück zum Zitat Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2013). Characterization of effective capacity in antenna selection MIMO systems. Journal of Communications and Networks, 15(5), 476–485.CrossRef Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2013). Characterization of effective capacity in antenna selection MIMO systems. Journal of Communications and Networks, 15(5), 476–485.CrossRef
32.
33.
Zurück zum Zitat Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2012) Effective capacity in receive antenna selection and spatially correlated MIMO-OSTBC systems. In 6th international symposium on telecommunications, (IST’12), Tehran, Iran (pp. 117–122). Lari, M., Mohammadi, A., Abdipour, A., & Lee, I. (2012) Effective capacity in receive antenna selection and spatially correlated MIMO-OSTBC systems. In 6th international symposium on telecommunications, (IST’12), Tehran, Iran (pp. 117–122).
34.
Zurück zum Zitat Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef
35.
Zurück zum Zitat Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.CrossRef Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.CrossRef
36.
Zurück zum Zitat Yeoh, P. L., Elkashlan, M., & Collings, I. B. (2011). Selection relaying with transmit beamforming: A comparison of fixed and variable gain relaying. IEEE Transactions on Communications, 59(6), 1720–1730.CrossRef Yeoh, P. L., Elkashlan, M., & Collings, I. B. (2011). Selection relaying with transmit beamforming: A comparison of fixed and variable gain relaying. IEEE Transactions on Communications, 59(6), 1720–1730.CrossRef
37.
Zurück zum Zitat Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.MATH Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.MATH
38.
Zurück zum Zitat Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643. Wu, D., & Negi, R. (2003). Effective capacity: A wireless link model for support of quality of service. IEEE Transactions on Wireless Communications, 2(4), 630–643.
39.
Zurück zum Zitat Soret, B., Torres, C. A., & Entrambasaguas, J. T. (2010). Capacity with explicit delay guarantees for generic source over correlated Rayleigh channel. IEEE Transactions on Wireless Communications, 9(6), 1901–1911.CrossRef Soret, B., Torres, C. A., & Entrambasaguas, J. T. (2010). Capacity with explicit delay guarantees for generic source over correlated Rayleigh channel. IEEE Transactions on Wireless Communications, 9(6), 1901–1911.CrossRef
40.
Zurück zum Zitat Kang, X., Liang, Y. C., & Nallanathan, A. (2008). Optimal power allocation for fading channels in cognitive radio networks under transmit and interference power constraints. In 2008 IEEE international conference on communications, (ICC’08), Beijing, China (pp. 3568–3572). Kang, X., Liang, Y. C., & Nallanathan, A. (2008). Optimal power allocation for fading channels in cognitive radio networks under transmit and interference power constraints. In 2008 IEEE international conference on communications, (ICC’08), Beijing, China (pp. 3568–3572).
Metadaten
Titel
Power allocation and effective capacity of AF successive relays
verfasst von
Mohammad Lari
Publikationsdatum
11.10.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 3/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1380-2

Weitere Artikel der Ausgabe 3/2018

Wireless Networks 3/2018 Zur Ausgabe

Neuer Inhalt