Skip to main content

2016 | OriginalPaper | Buchkapitel

6. Power System Dynamics: Bifurcation Behavior

verfasst von : Harry G. Kwatny, Karen Miu-Miller

Erschienen in: Power System Dynamics and Control

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter begins with a summary of the basic properties of systems described by differential-algebraic equations (DAEs) and moves on to study singularities and bifurcations of DAEs. The study of local behavior around bifurcation points of the equilibrium equations is important as such points typically involve some sort of static or dynamic instability phenomenon. Computational methods for finding these static bifurcation points and generating models for examining local behavior are considered next. Locating Hopf (dynamic) bifurcation points are also examined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The co-dimension of a k-dimensional submanifold of an n-dimensional manifold is \(n-k\).
 
2
The present discussion of normal forms is confined to vector fields, which for DAEs means normal forms near causal equilibria. However, there is an emerging theory for DAEs [168].
 
3
For a generic function \(\psi :{R^{2N + k}} \rightarrow {R^{2N + 1}}\), the solution set of \(\psi = 0\) is a smooth \(k-1\)-dimensional manifold and \({\mathop {\text {rank}}\nolimits }\ \varPhi = 2N + 1\), its maximum rank on the set [10], Section 31. Thus, for a generic family \(\varPhi ^*\) exists on a neighborhood of any solution of \(\psi = 0\).
 
4
Take \({R^*} = {R^T}{\left( {R{R^T}} \right) ^{ - 1}}\), then \(\ker {{R^{*T}}} \sim \ker R \). Similarly, if \({L^*} = {\left( {{L^T}L} \right) ^{ - 1}}{L^T}\) then \(\ker {L^*} \sim \ker {L^T}\).
 
5
In the following computation, with \({\tilde{r}}=1\), W has a single column denoted \(w_0\).
 
6
Recall that if \(\mathcal{H} = \mathcal{R} \otimes \mathcal{S}\), then there is a map \(\mathcal{Q}: \mathcal{H} \rightarrow \mathcal{H}\) such that for each \(X = R + S\), \(\mathcal{Q}X = R\). Clearly, \({\text {Im}} \mathcal{Q} = \mathcal{R}\) and \({\text {Ker}}\mathcal{Q} = \mathcal{S}\). \(\mathcal{Q}\) is the projection on \({\text {Im}}\mathcal{R}\) along \({\text {Ker}}\mathcal{Q}\) if \(\mathcal{Q}^2 = \mathcal{Q}\).
 
7
Practical stability as used here is related to but not identical with the notion of practical stability in [127].
 
8
Another approach to the study of equilibrium point structure of lossless power systems is given by Baillieul and Byrnes in [20].
 
Metadaten
Titel
Power System Dynamics: Bifurcation Behavior
verfasst von
Harry G. Kwatny
Karen Miu-Miller
Copyright-Jahr
2016
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-0-8176-4674-5_6

Neuer Inhalt