Skip to main content

2013 | OriginalPaper | Buchkapitel

3. Power Transmission and Voltage Regulation

verfasst von : Vahid Majidzadeh Bafar, Alexandre Schmid

Erschienen in: Wireless Cortical Implantable Systems

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Issues related to the voltage regulation in remotely powered implants are discussed in this chapter. Two on-chip low drop out (LDO) voltage regulators are presented which target two different specification sets, and which are incorporated into two versions of the Neuro+ IC. The first LDO voltage regulator is proposed to support the Neuro+I and provides 1.8 V output voltage. The regulator is stable over the full range of alternating load current and provides fast load regulation, which is achieved by applying a time -domain design methodology. Moreover, a new compensation technique is proposed and implemented to improve PSRR beyond the performance levels which can be obtained using the standard cascode compensation technique. Measurement results show that the regulator has a load regulation of 0.175 V/A, a line regulation of 0.024 %, and a PSRR of 37 dB at a 1 MHz power carrier frequency . The output of the regulator settles within 10-bit accuracy of the nominal voltage (1.8 V) within 1.6 \(\upmu \)s, at full load transition. The total ground current including the bandgap reference circuit is \(28\,\upmu \)A and the active chip area measures 0.104 mm\(^{2}\) in a \(0.18\,\upmu \)m CMOS technology. The second LDO voltage regulator targets the Neuro+II and generates a 1.2 V output voltage. The regulator is stable over the full range of the load current up to 20 mA and supports burst mode of operation using a robust start-up circuit in the bandgap reference circuit. The Regulator achieves a line and load regulation of 3.45 % and 0.11 V/A, respectively. The sample prototype occupies a silicon area of 0.073 mm\(^{2}\) in a \(0.18\,\upmu \)m CMOS technology.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Silay KM (2012) Remotely powered wireless conrtical implants for brain-machine interfaces. EPFL Thesis, N\(^{o}\)5286 Silay KM (2012) Remotely powered wireless conrtical implants for brain-machine interfaces. EPFL Thesis, N\(^{o}\)5286
2.
Zurück zum Zitat Silay KM, Dehollain C, Declercq M (2008) Orthogonally oriented coils for minimization of cross-coupling in cortical implants. In: Proceedings of the IEEE BioCAS’08, pp 109–112 Nov 2008 Silay KM, Dehollain C, Declercq M (2008) Orthogonally oriented coils for minimization of cross-coupling in cortical implants. In: Proceedings of the IEEE BioCAS’08, pp 109–112 Nov 2008
3.
Zurück zum Zitat Silay KM, Dondi D, Larcher L, Declercq M, Benini L, Leblebici Y, Dehollain C (2009) Load optimization of an inductive power link for remote powering of biomedical implants. In: Int Symp Cir Syst, ISCAS’09, pp 533–536 May 2009 Silay KM, Dondi D, Larcher L, Declercq M, Benini L, Leblebici Y, Dehollain C (2009) Load optimization of an inductive power link for remote powering of biomedical implants. In: Int Symp Cir Syst, ISCAS’09, pp 533–536 May 2009
4.
Zurück zum Zitat Silay KM, Dehollain C, Declercq M (2010) Inductive power link for a wireless cortical implant with biocompatible packaging. In: Proceedings of the IEEE Sensors’10, Nov 2010 Silay KM, Dehollain C, Declercq M (2010) Inductive power link for a wireless cortical implant with biocompatible packaging. In: Proceedings of the IEEE Sensors’10, Nov 2010
5.
Zurück zum Zitat Crepaldi PC, Pimenta TC, Moreno RL, Rodriguez EC (2010) A linear voltage regulator for an implantable device monitoring system. Analog Integr Circ Signal Process 65(1):131–140CrossRef Crepaldi PC, Pimenta TC, Moreno RL, Rodriguez EC (2010) A linear voltage regulator for an implantable device monitoring system. Analog Integr Circ Signal Process 65(1):131–140CrossRef
6.
Zurück zum Zitat Hu Y, Sawan M, El-Gamal MN (2005) An integrated power recovery module dedicated to implantable electronic devices. Analog Integr Circ Signal Process 43(2):171–181CrossRef Hu Y, Sawan M, El-Gamal MN (2005) An integrated power recovery module dedicated to implantable electronic devices. Analog Integr Circ Signal Process 43(2):171–181CrossRef
7.
Zurück zum Zitat Rincon-Mora GA, Allen PE (1998) A low-voltage, low quiescent current, low drop-out regulator. IEEE J Solid-State Circ 33(1):36–44CrossRef Rincon-Mora GA, Allen PE (1998) A low-voltage, low quiescent current, low drop-out regulator. IEEE J Solid-State Circ 33(1):36–44CrossRef
8.
Zurück zum Zitat Oh W, Bakkaloglu B (2007) A CMOS low-dropout regulator with current-mode feedback buffer amplifier. IEEE Trans Circ Syst-II 54(10):922–926CrossRef Oh W, Bakkaloglu B (2007) A CMOS low-dropout regulator with current-mode feedback buffer amplifier. IEEE Trans Circ Syst-II 54(10):922–926CrossRef
9.
Zurück zum Zitat Leung KN, Mok PKT (2003) A capacitor-free CMOS low-dropout regulator with damping-factor control frequency compensation. IEEE J Solid-State Circ 38(10):1691–1702CrossRef Leung KN, Mok PKT (2003) A capacitor-free CMOS low-dropout regulator with damping-factor control frequency compensation. IEEE J Solid-State Circ 38(10):1691–1702CrossRef
10.
Zurück zum Zitat Milliken RJ, Martinez JS, Sinencio ES (2007) Full on-chip CMOS low-dropout voltage regulator. IEEE Trans Circ Syst-I 54(9):1879–1890 Milliken RJ, Martinez JS, Sinencio ES (2007) Full on-chip CMOS low-dropout voltage regulator. IEEE Trans Circ Syst-I 54(9):1879–1890
11.
Zurück zum Zitat Balachandran GK, Barnett RE (2006) A 110 nA voltage regulator system with dynamic bandwidth boosting for RFID systems. IEEE J Solid-State Circ 41(9):2019–2028CrossRef Balachandran GK, Barnett RE (2006) A 110 nA voltage regulator system with dynamic bandwidth boosting for RFID systems. IEEE J Solid-State Circ 41(9):2019–2028CrossRef
12.
Zurück zum Zitat Ahuja BK (1983) An improved frequency compensation technique for CMOS operational amplifiers. IEEE J Solid-State Circ 18(6):629–633MathSciNetCrossRef Ahuja BK (1983) An improved frequency compensation technique for CMOS operational amplifiers. IEEE J Solid-State Circ 18(6):629–633MathSciNetCrossRef
13.
Zurück zum Zitat Feldman AR (1997) High-speed, low-power, sigma-delta modulators for RF baseband channel applications. Ph.D Thesis, University of California, Berkeley, Sept 1997 Feldman AR (1997) High-speed, low-power, sigma-delta modulators for RF baseband channel applications. Ph.D Thesis, University of California, Berkeley, Sept 1997
14.
Zurück zum Zitat Banba H, Shiga H, Umezawa A, Miyaba T, Tanzawa T, Atsumi S, Sakui K (1999) A CMOS bandgap reference circuit with sub-1-V operation. IEEE J Solid-State Circ 34(5):670–674CrossRef Banba H, Shiga H, Umezawa A, Miyaba T, Tanzawa T, Atsumi S, Sakui K (1999) A CMOS bandgap reference circuit with sub-1-V operation. IEEE J Solid-State Circ 34(5):670–674CrossRef
15.
Zurück zum Zitat Majidzadeh V, Schmid A, Leblebici Y (2009) A fully on-chip LDO voltage regulator for remotely powered cortical implants. In: Proceedings of the European Solid-State Circuits Conference, ESSCIRC’09’, pp 424–427, Sept 2009 Majidzadeh V, Schmid A, Leblebici Y (2009) A fully on-chip LDO voltage regulator for remotely powered cortical implants. In: Proceedings of the European Solid-State Circuits Conference, ESSCIRC’09’, pp 424–427, Sept 2009
16.
Zurück zum Zitat Majidzadeh V, Silay MK, Schmid A, Deholine C, Leblebici Y (2010) A fully on-chip LDO voltage regulator with 37 dB PSRR at 1 MHz for remotely powered biomedical implants. J Analog Integr Circ Signal process Springer 67:157–168CrossRef Majidzadeh V, Silay MK, Schmid A, Deholine C, Leblebici Y (2010) A fully on-chip LDO voltage regulator with 37 dB PSRR at 1 MHz for remotely powered biomedical implants. J Analog Integr Circ Signal process Springer 67:157–168CrossRef
Metadaten
Titel
Power Transmission and Voltage Regulation
verfasst von
Vahid Majidzadeh Bafar
Alexandre Schmid
Copyright-Jahr
2013
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-6702-1_3

Neuer Inhalt