Skip to main content
Erschienen in: Journal of Material Cycles and Waste Management 5/2020

19.05.2020 | ORIGINAL ARTICLE

Practical dehalogenation of automobile shredder residue in NaOH/ethylene glycol with an up-scale ball mill reactor

verfasst von: Jiaqi Lu, Siqingaowa Borjigin, Shogo Kumagai, Tomohito Kameda, Yuko Saito, Yasuhiro Fukushima, Toshiaki Yoshioka

Erschienen in: Journal of Material Cycles and Waste Management | Ausgabe 5/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Effective and efficient dehalogenation for automobile shredder residue (ASR) was successfully carried out in an NaOH/ethylene glycol solvent at 190 °C with an up-scale ball mill reactor. The element content and plastic in different fractions of ASR samples were analyzed. 1.2 ± 0.4 wt% Cl and 0.1 ± 0.1 wt% Br were measured in the fine mixture of ASR; consequently, dehalogenation was essential to mitigate the formation of hazardous compounds during thermal treatment. Sufficiently high dechlorination and debromination capacities were obtained by adjusting ball numbers and NaOH content, and the effectiveness of the treatment for throughput scale-up was confirmed. Dehalogenated ASR achieved lower than 0.1 wt% of Cl and negligible Br content, making the product suitable for feedstock recycling to recover metals and petrochemicals. We performed a life cycle assessment on the up-scale dehalogenation process and identified two beneficial impacts in comparison with the landfilling of ASR: reductions in carcinogenic effects and ecotoxicity. To mitigate impacts on climate change and resource depletion, improving dehalogenation efficiency by scaling up the throughput, enhancing the heat insulation system, and including a process for ethylene glycol recycling need to be considered.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Sakai S-i, Yoshida H, Hiratsuka J, Vandecasteele C, Kohlmeyer R, Rotter VS, Passarini F, Santini A, Peeler M, Li J (2014) An international comparative study of end-of-life vehicle (ELV) recycling systems. J Mater Cycles Waste Manag 16(1):1–20CrossRef Sakai S-i, Yoshida H, Hiratsuka J, Vandecasteele C, Kohlmeyer R, Rotter VS, Passarini F, Santini A, Peeler M, Li J (2014) An international comparative study of end-of-life vehicle (ELV) recycling systems. J Mater Cycles Waste Manag 16(1):1–20CrossRef
5.
Zurück zum Zitat Zhang C, Chen M (2018) Prioritising alternatives for sustainable end-of-life vehicle disassembly in China using AHP methodology. Technol Anal Strategic Manag 30(5):556–568MathSciNetCrossRef Zhang C, Chen M (2018) Prioritising alternatives for sustainable end-of-life vehicle disassembly in China using AHP methodology. Technol Anal Strategic Manag 30(5):556–568MathSciNetCrossRef
6.
Zurück zum Zitat Xu G, Yano J, Sakai S-i (2018) Recycling potentials of precious metals from end-of-life vehicle parts by selective dismantling. Environ Sci Technol 53(2):733–742CrossRef Xu G, Yano J, Sakai S-i (2018) Recycling potentials of precious metals from end-of-life vehicle parts by selective dismantling. Environ Sci Technol 53(2):733–742CrossRef
7.
Zurück zum Zitat Nourreddine M (2007) Recycling of auto shredder residue. J Hazard Mater 139(3):481–490CrossRef Nourreddine M (2007) Recycling of auto shredder residue. J Hazard Mater 139(3):481–490CrossRef
8.
Zurück zum Zitat Cossu R, Lai T (2015) Automotive shredder residue (ASR) management: an overview. Waste Manag 45:143–151CrossRef Cossu R, Lai T (2015) Automotive shredder residue (ASR) management: an overview. Waste Manag 45:143–151CrossRef
9.
Zurück zum Zitat Li C, Chen J (2019) The significance of restrictions on waste import in promoting green development in China. Am J Environ Protect 8(1):5–16CrossRef Li C, Chen J (2019) The significance of restrictions on waste import in promoting green development in China. Am J Environ Protect 8(1):5–16CrossRef
10.
Zurück zum Zitat Takaoka M, Shiono A, Nishimura K, Yamamoto T, Uruga T, Takeda N, Tanaka T, Oshita K, Matsumoto T, Harada H (2005) Dynamic change of copper in fly ash during de novo synthesis of dioxins. Environ Sci Technol 39(15):5878–5884CrossRef Takaoka M, Shiono A, Nishimura K, Yamamoto T, Uruga T, Takeda N, Tanaka T, Oshita K, Matsumoto T, Harada H (2005) Dynamic change of copper in fly ash during de novo synthesis of dioxins. Environ Sci Technol 39(15):5878–5884CrossRef
11.
Zurück zum Zitat Wey M, Liu K, Yu W, Lin C, Chang F (2008) Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds. Waste Manag 28(2):406–415CrossRef Wey M, Liu K, Yu W, Lin C, Chang F (2008) Influences of chlorine content on emission of HCl and organic compounds in waste incineration using fluidized beds. Waste Manag 28(2):406–415CrossRef
12.
Zurück zum Zitat Singh J, Lee B-K (2015) Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment. Waste Manag 38:271–283CrossRef Singh J, Lee B-K (2015) Pollution control and metal resource recovery for low grade automobile shredder residue: a mechanism, bioavailability and risk assessment. Waste Manag 38:271–283CrossRef
13.
Zurück zum Zitat Mallampati SR, Lee BH, Mitoma Y, Simion C (2018) Sustainable recovery of precious metals from end-of-life vehicles shredder residue by a novel hybrid ball-milling and nanoparticles enabled froth flotation process. J Clean Prod 171:66–75CrossRef Mallampati SR, Lee BH, Mitoma Y, Simion C (2018) Sustainable recovery of precious metals from end-of-life vehicles shredder residue by a novel hybrid ball-milling and nanoparticles enabled froth flotation process. J Clean Prod 171:66–75CrossRef
14.
Zurück zum Zitat Evangelopoulos P, Sophonrat N, Jilvero H, Yang W (2018) Investigation on the low-temperature pyrolysis of automotive shredder residue (ASR) for energy recovery and metal recycling. Waste Manag 76:507–515CrossRef Evangelopoulos P, Sophonrat N, Jilvero H, Yang W (2018) Investigation on the low-temperature pyrolysis of automotive shredder residue (ASR) for energy recovery and metal recycling. Waste Manag 76:507–515CrossRef
15.
Zurück zum Zitat Sakai S-i, Noma Y, Kida A (2007) End-of-life vehicle recycling and automobile shredder residue management in Japan. J Mater Cycles Waste Manag 9(2):151–158CrossRef Sakai S-i, Noma Y, Kida A (2007) End-of-life vehicle recycling and automobile shredder residue management in Japan. J Mater Cycles Waste Manag 9(2):151–158CrossRef
16.
Zurück zum Zitat Osada M, Tanigaki N, Takahashi S, Sakai S-i (2008) Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting process. J Mater Cycles Waste Manag 10(2):93–101CrossRef Osada M, Tanigaki N, Takahashi S, Sakai S-i (2008) Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting process. J Mater Cycles Waste Manag 10(2):93–101CrossRef
17.
Zurück zum Zitat Kameda T, Fukuda Y, Park K-S, Grause G, Yoshioka T (2009) Efficient dehalogenation of automobile shredder residue in NaOH/ethylene glycol using a ball mill. Chemosphere 74(2):287–292CrossRef Kameda T, Fukuda Y, Park K-S, Grause G, Yoshioka T (2009) Efficient dehalogenation of automobile shredder residue in NaOH/ethylene glycol using a ball mill. Chemosphere 74(2):287–292CrossRef
18.
Zurück zum Zitat Yoshioka T, Kameda T, Ieshige M, Okuwaki A (2008) Dechlorination behaviour of flexible poly(vinyl chloride) in NaOH/EG solution. Polym Degrad Stab 93:1822–1825CrossRef Yoshioka T, Kameda T, Ieshige M, Okuwaki A (2008) Dechlorination behaviour of flexible poly(vinyl chloride) in NaOH/EG solution. Polym Degrad Stab 93:1822–1825CrossRef
19.
Zurück zum Zitat Wang L-C, Lee W-J, Lee W-S, Chang-Chien G-P, Tsai P-J (2003) Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Sci Total Environ 302(1–3):185–198CrossRef Wang L-C, Lee W-J, Lee W-S, Chang-Chien G-P, Tsai P-J (2003) Effect of chlorine content in feeding wastes of incineration on the emission of polychlorinated dibenzo-p-dioxins/dibenzofurans. Sci Total Environ 302(1–3):185–198CrossRef
20.
Zurück zum Zitat Kameda T, Fukushima S, Shoji C, Grause G, Yoshioka T (2013) Electrodialysis for NaCl/EG solution using ion-exchange membranes. J Mater Cycles Waste Manag 15(1):111–114CrossRef Kameda T, Fukushima S, Shoji C, Grause G, Yoshioka T (2013) Electrodialysis for NaCl/EG solution using ion-exchange membranes. J Mater Cycles Waste Manag 15(1):111–114CrossRef
21.
Zurück zum Zitat Kumagai S, Lu J, Fukushima Y, Ohno H, Kameda T, Yoshioka T (2018) Diagnosing chlorine industrial metabolism by evaluating the potential of chlorine recovery from polyvinyl chloride wastes—a case study in Japan. Resour Conserv Recycl 133:354–361CrossRef Kumagai S, Lu J, Fukushima Y, Ohno H, Kameda T, Yoshioka T (2018) Diagnosing chlorine industrial metabolism by evaluating the potential of chlorine recovery from polyvinyl chloride wastes—a case study in Japan. Resour Conserv Recycl 133:354–361CrossRef
22.
Zurück zum Zitat Guinee JB, Heijungs R, Vijver MG, Peijnenburg W (2017) Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nat Nanotechnol 12(8):727–733CrossRef Guinee JB, Heijungs R, Vijver MG, Peijnenburg W (2017) Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterials. Nat Nanotechnol 12(8):727–733CrossRef
23.
Zurück zum Zitat Villares M, Işıldar A, van der Giesen C, Guinée J (2017) Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. Int J Life Cycle Assess 22(10):1618–1633CrossRef Villares M, Işıldar A, van der Giesen C, Guinée J (2017) Does ex ante application enhance the usefulness of LCA? A case study on an emerging technology for metal recovery from e-waste. Int J Life Cycle Assess 22(10):1618–1633CrossRef
24.
Zurück zum Zitat Lu J, Kumagai S, Ohno H, Kameda T, Saito Y, Yoshioka T, Fukushima Y (2019) Deducing targets of emerging technologies based on ex ante life cycle thinking: Case study on a chlorine recovery process for polyvinyl chloride wastes. Resour Conserv Recycl 151:104500CrossRef Lu J, Kumagai S, Ohno H, Kameda T, Saito Y, Yoshioka T, Fukushima Y (2019) Deducing targets of emerging technologies based on ex ante life cycle thinking: Case study on a chlorine recovery process for polyvinyl chloride wastes. Resour Conserv Recycl 151:104500CrossRef
25.
Zurück zum Zitat Khodier A, Williams K, Dallison N (2018) Challenges around automotive shredder residue production and disposal. Waste Manag 73:566–573CrossRef Khodier A, Williams K, Dallison N (2018) Challenges around automotive shredder residue production and disposal. Waste Manag 73:566–573CrossRef
27.
Zurück zum Zitat Lu J, Borjigin S, Kumagai S, Kameda T, Saito Y, Yoshioka T (2019) Practical dechlorination of polyvinyl chloride wastes in NaOH/ethylene glycol using an up-scale ball mill reactor and validation by discrete element method simulations. Waste Manag 99:31–41CrossRef Lu J, Borjigin S, Kumagai S, Kameda T, Saito Y, Yoshioka T (2019) Practical dechlorination of polyvinyl chloride wastes in NaOH/ethylene glycol using an up-scale ball mill reactor and validation by discrete element method simulations. Waste Manag 99:31–41CrossRef
28.
Zurück zum Zitat Abdi H (2010) Coefficient of variation. Encycl Res Design 1:169–171 Abdi H (2010) Coefficient of variation. Encycl Res Design 1:169–171
29.
Zurück zum Zitat Ciacci L, Morselli L, Passarini F, Santini A, Vassura I (2010) A comparison among different automotive shredder residue treatment processes. Int J Life Cycle Assess 15(9):896–906CrossRef Ciacci L, Morselli L, Passarini F, Santini A, Vassura I (2010) A comparison among different automotive shredder residue treatment processes. Int J Life Cycle Assess 15(9):896–906CrossRef
30.
Zurück zum Zitat Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21(9):1218–1230CrossRef Wernet G, Bauer C, Steubing B, Reinhard J, Moreno-Ruiz E, Weidema B (2016) The ecoinvent database version 3 (part I): overview and methodology. Int J Life Cycle Assess 21(9):1218–1230CrossRef
31.
Zurück zum Zitat Ciroth A (2007) ICT for environment in life cycle applications openLCA—a new open source software for life cycle assessment. Int J Life Cycle Assess 12(4):209CrossRef Ciroth A (2007) ICT for environment in life cycle applications openLCA—a new open source software for life cycle assessment. Int J Life Cycle Assess 12(4):209CrossRef
32.
Zurück zum Zitat Goedkoop MJ (1999) The Eco-indicator 99—A damage oriented method for Life Cycle Impact Assessment—Methodology Report, PRé Consultants. Amersfoort, The Netherlands Goedkoop MJ (1999) The Eco-indicator 99—A damage oriented method for Life Cycle Impact Assessment—Methodology Report, PRé Consultants. Amersfoort, The Netherlands
33.
Zurück zum Zitat Santini A, Passarini F, Vassura I, Serrano D, Dufour J, Morselli L (2012) Auto shredder residue recycling: mechanical separation and pyrolysis. Waste Manag 32(5):852–858CrossRef Santini A, Passarini F, Vassura I, Serrano D, Dufour J, Morselli L (2012) Auto shredder residue recycling: mechanical separation and pyrolysis. Waste Manag 32(5):852–858CrossRef
34.
Zurück zum Zitat Watanabe I, Sakai S-i (2003) Environmental release and behavior of brominated flame retardants. Environ Int 29(6):665–682CrossRef Watanabe I, Sakai S-i (2003) Environmental release and behavior of brominated flame retardants. Environ Int 29(6):665–682CrossRef
35.
Zurück zum Zitat Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112(1):9–17CrossRef Birnbaum LS, Staskal DF (2004) Brominated flame retardants: cause for concern? Environ Health Perspect 112(1):9–17CrossRef
36.
Zurück zum Zitat Kameda T, Ono M, Grause G, Mizoguchi T, Yoshioka T (2008) Ball mill-assisted dechlorination of flexible and rigid poly(vinyl chloride) in NaOH/EG solution. Ind Eng Chem Res 47(22):8619–8624CrossRef Kameda T, Ono M, Grause G, Mizoguchi T, Yoshioka T (2008) Ball mill-assisted dechlorination of flexible and rigid poly(vinyl chloride) in NaOH/EG solution. Ind Eng Chem Res 47(22):8619–8624CrossRef
37.
Zurück zum Zitat Hennebert P, Filella M (2018) WEEE plastic sorting for bromine essential to enforce EU regulation. Waste Manag 71:390–399CrossRef Hennebert P, Filella M (2018) WEEE plastic sorting for bromine essential to enforce EU regulation. Waste Manag 71:390–399CrossRef
38.
Zurück zum Zitat Kumagai S, Grause G, Kameda T, Yoshioka T (2017) Thermal decomposition of tetrabromobisphenol-A containing printed circuit boards in the presence of calcium hydroxide. J Mater Cycles Waste Manag 19(1):282–293CrossRef Kumagai S, Grause G, Kameda T, Yoshioka T (2017) Thermal decomposition of tetrabromobisphenol-A containing printed circuit boards in the presence of calcium hydroxide. J Mater Cycles Waste Manag 19(1):282–293CrossRef
39.
Zurück zum Zitat Kumagai S, Yoshioka T (2016) Feedstock recycling via waste plastic pyrolysis. J Jpn Pet Inst 59(6):243–253CrossRef Kumagai S, Yoshioka T (2016) Feedstock recycling via waste plastic pyrolysis. J Jpn Pet Inst 59(6):243–253CrossRef
40.
Zurück zum Zitat Goedkoop M, Effting S, Collignon M (2000) The eco-indicator 99: a damage oriented method for life-cycle impact assessment: manual for designers. PRé Consultants. Amersfoort, The Netherlands Goedkoop M, Effting S, Collignon M (2000) The eco-indicator 99: a damage oriented method for life-cycle impact assessment: manual for designers. PRé Consultants. Amersfoort, The Netherlands
41.
Zurück zum Zitat Yoshioka T, Lu J, Borjigin S, Kumagai S, Kameda T, Saito Y (2019) Dehalogenation technology of automobile shredder dust (ASR) by wet process (in Japanese). In: Japan Society of Automotive Engineers Annual Spring Congress 2019 Yoshioka T, Lu J, Borjigin S, Kumagai S, Kameda T, Saito Y (2019) Dehalogenation technology of automobile shredder dust (ASR) by wet process (in Japanese). In: Japan Society of Automotive Engineers Annual Spring Congress 2019
42.
Zurück zum Zitat Murray CJ (1994) Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bull WHO 72(3):429MathSciNet Murray CJ (1994) Quantifying the burden of disease: the technical basis for disability-adjusted life years. Bull WHO 72(3):429MathSciNet
43.
Zurück zum Zitat Humbert S, Margni M, Jolliet O (2005) IMPACT 2002+: user guide. Draft for version 2. Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland Humbert S, Margni M, Jolliet O (2005) IMPACT 2002+: user guide. Draft for version 2. Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
Metadaten
Titel
Practical dehalogenation of automobile shredder residue in NaOH/ethylene glycol with an up-scale ball mill reactor
verfasst von
Jiaqi Lu
Siqingaowa Borjigin
Shogo Kumagai
Tomohito Kameda
Yuko Saito
Yasuhiro Fukushima
Toshiaki Yoshioka
Publikationsdatum
19.05.2020
Verlag
Springer Japan
Erschienen in
Journal of Material Cycles and Waste Management / Ausgabe 5/2020
Print ISSN: 1438-4957
Elektronische ISSN: 1611-8227
DOI
https://doi.org/10.1007/s10163-020-01052-z

Weitere Artikel der Ausgabe 5/2020

Journal of Material Cycles and Waste Management 5/2020 Zur Ausgabe