Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2020

28.10.2020

Prediction and Comparison of Creep Behavior of X20 Steam Plant Piping Network with Different Phenomenological Creep Models

verfasst von: Smith Salifu, Dawood Desai, Schalk Kok

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In service, steam pipes are subjected to high temperature close to 0.4 Tm (melting temperature) or higher and pressure; thus, making them prone to failure due to creep. Often, the design methods for these steam pipes usually do not provide their specific in-service life; hence, some type of service fitness tests are performed, and data obtained from the tests are used to inform the routine inspections. Choosing a creep model that favorably describe the creep behavior of components in service is paramount to engineers as well as the plant operators. Reports have shown that there are several creep models available and they all behave differently with different materials, and operating conditions. In this study, the creep behavior of X20 (12Cr-1MoVNi) steam piping network subjected to three phenomenological creep models (conventional hyperbolic sine creep, modified hyperbolic sine creep and constitutive creep model) was investigated. Fortran user subroutine scripts were developed for the three models and implemented in finite element (FE) code, Abaqus to determine the creep stress and strain rate, while the useful creep life and creep damage was determined using fe-safe/TURBOlife software. The results show that the modified hyperbolic sine creep model is more suitable for estimating the creep behavior of X20 steam piping under the specified operating conditions because of its more conservative prediction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P. Auerkari, J. Salonen, S. Holmström, A. Laukkanen, J. Rantala, and R. Nikkarila, Creep damage and Long Term Life Modelling of an X20 Steam Line Component, Eng. Fail. Anal., 2013, 35, p 508–515CrossRef P. Auerkari, J. Salonen, S. Holmström, A. Laukkanen, J. Rantala, and R. Nikkarila, Creep damage and Long Term Life Modelling of an X20 Steam Line Component, Eng. Fail. Anal., 2013, 35, p 508–515CrossRef
2.
Zurück zum Zitat J. Storesund, K. Borggreen, and W. Zang, Creep Behaviour and Lifetime of Large Welds in X20 CrMOV 12 1—Results Based on Simulation and Inspection, Int. J. Press. Vessel., 2006, 83(11–12), p 875–883CrossRef J. Storesund, K. Borggreen, and W. Zang, Creep Behaviour and Lifetime of Large Welds in X20 CrMOV 12 1—Results Based on Simulation and Inspection, Int. J. Press. Vessel., 2006, 83(11–12), p 875–883CrossRef
3.
Zurück zum Zitat S. Holmström, R. Pohja, A. Nurmela, P. Moilanen, and P. Auerkari, Creep and Creep-Fatigue Behaviour of 316 Stainless Steel, Procedia Eng., 2013, 55, p 160–164CrossRef S. Holmström, R. Pohja, A. Nurmela, P. Moilanen, and P. Auerkari, Creep and Creep-Fatigue Behaviour of 316 Stainless Steel, Procedia Eng., 2013, 55, p 160–164CrossRef
4.
Zurück zum Zitat D. Liu, D. Pons, and E. Wong, The Unified Creep-Fatigue Equation for Stainless Steel 316, Metals, 2016, 6(9), p 219CrossRef D. Liu, D. Pons, and E. Wong, The Unified Creep-Fatigue Equation for Stainless Steel 316, Metals, 2016, 6(9), p 219CrossRef
5.
Zurück zum Zitat S. Brett, S. Holmström, J. Hald, U. Borg, J. Aakjær, and R. van Vulpen, Creep Damage Development in Welded X20 and P91, Int. J. Press. Vessel. Pip., 2011, 35, p 508–515 S. Brett, S. Holmström, J. Hald, U. Borg, J. Aakjær, and R. van Vulpen, Creep Damage Development in Welded X20 and P91, Int. J. Press. Vessel. Pip., 2011, 35, p 508–515
6.
Zurück zum Zitat P. Auerkari, S. Holmström, J. Veivo, and J. Salonen, Creep Damage and Expected Creep Life for Welded 9–11% Cr Steels, Int. J. Press. Vessel., 2007, 84(1–2), p 69–74CrossRef P. Auerkari, S. Holmström, J. Veivo, and J. Salonen, Creep Damage and Expected Creep Life for Welded 9–11% Cr Steels, Int. J. Press. Vessel., 2007, 84(1–2), p 69–74CrossRef
7.
Zurück zum Zitat M. Yaguchi, T. Ogata, and T. Sakai, Creep Strength of High Chromium Steels Welded Parts under Multiaxial Stress Conditions, Int. J. Press. Vessel., 2010, 87(6), p 357–364CrossRef M. Yaguchi, T. Ogata, and T. Sakai, Creep Strength of High Chromium Steels Welded Parts under Multiaxial Stress Conditions, Int. J. Press. Vessel., 2010, 87(6), p 357–364CrossRef
8.
Zurück zum Zitat V. Gaffard, A.-F. Gourgues-Lorenzon, and J. Besson, High Temperature Creep Flow and Damage Properties of 9Cr1MoNbV Steels: Base Metal and Weldment, Nuclear Eng., 2005, 235(24), p 2547–2562CrossRef V. Gaffard, A.-F. Gourgues-Lorenzon, and J. Besson, High Temperature Creep Flow and Damage Properties of 9Cr1MoNbV Steels: Base Metal and Weldment, Nuclear Eng., 2005, 235(24), p 2547–2562CrossRef
9.
Zurück zum Zitat A. Yaghi, T. Hyde, A. Becker, and W. Sun, Finite Element Simulation of Welding Residual Stresses in Martensitic Steel Pipes, Mater. Res. Innov., 2013, 17(5), p 306–311CrossRef A. Yaghi, T. Hyde, A. Becker, and W. Sun, Finite Element Simulation of Welding Residual Stresses in Martensitic Steel Pipes, Mater. Res. Innov., 2013, 17(5), p 306–311CrossRef
10.
Zurück zum Zitat A. Yaghi, T. Hyde, A. Becker, and W. Sun, Finite Element Simulation of Welding and Residual Stresses in a P91 Steel Pipe Incorporating Solid-State Phase Transformation and Post-weld Heat Treatment, J. Strain Anal. Eng. Des., 2008, 43(5), p 275–293CrossRef A. Yaghi, T. Hyde, A. Becker, and W. Sun, Finite Element Simulation of Welding and Residual Stresses in a P91 Steel Pipe Incorporating Solid-State Phase Transformation and Post-weld Heat Treatment, J. Strain Anal. Eng. Des., 2008, 43(5), p 275–293CrossRef
11.
Zurück zum Zitat F.Q. Yang, H. Xue, L.Y. Zhao and J. Tian, Calculations and Modeling of Material Constants in Hyperbolic-Sine Creep Model for 316 Stainless Steels, in Applied Mechanics and Materials, 2014, Trans Tech Publ. F.Q. Yang, H. Xue, L.Y. Zhao and J. Tian, Calculations and Modeling of Material Constants in Hyperbolic-Sine Creep Model for 316 Stainless Steels, in Applied Mechanics and Materials, 2014, Trans Tech Publ.
12.
Zurück zum Zitat K. Naumenko, H. Altenbach, and A. Kutschke, A Constitutive Model for Creep and Long-Term Strength in Advanced Heat Resistant Steels and Structures, J. Transit., 2009, 2(3), p 4 K. Naumenko, H. Altenbach, and A. Kutschke, A Constitutive Model for Creep and Long-Term Strength in Advanced Heat Resistant Steels and Structures, J. Transit., 2009, 2(3), p 4
13.
Zurück zum Zitat D. Annaratone, Cylinders under Internal Pressure, Press. Vessel. Des., 2007, 1, p 47–125CrossRef D. Annaratone, Cylinders under Internal Pressure, Press. Vessel. Des., 2007, 1, p 47–125CrossRef
14.
Zurück zum Zitat B. Kanlıkama, A. Abuşoğlu, and İ.H. Güzelbey, Coupled Thermoelastic Analysis of Thick-Walled Pressurized Cylinders, Int. J. Energy Power Eng., 2013, 2(2), p 60–68CrossRef B. Kanlıkama, A. Abuşoğlu, and İ.H. Güzelbey, Coupled Thermoelastic Analysis of Thick-Walled Pressurized Cylinders, Int. J. Energy Power Eng., 2013, 2(2), p 60–68CrossRef
15.
Zurück zum Zitat A. Kandil, A. El-Kady, and A. El-Kafrawy, Transient Thermal Stress Analysis of Thick-Walled Cylinders, Int. J. Mech. Sci., 1995, 37(7), p 721–732CrossRef A. Kandil, A. El-Kady, and A. El-Kafrawy, Transient Thermal Stress Analysis of Thick-Walled Cylinders, Int. J. Mech. Sci., 1995, 37(7), p 721–732CrossRef
16.
Zurück zum Zitat V. Pesonen, Online Creep and Fatigue Monitoring in Power Plants, Master’s thesis, 2014 V. Pesonen, Online Creep and Fatigue Monitoring in Power Plants, Master’s thesis, 2014
17.
Zurück zum Zitat J. Montes, F. Cuevas, and J. Cintas, New Creep Law, Mater. Sci. Technol., 2012, 28(3), p 377–379CrossRef J. Montes, F. Cuevas, and J. Cintas, New Creep Law, Mater. Sci. Technol., 2012, 28(3), p 377–379CrossRef
18.
Zurück zum Zitat B. Dyson, Use of CDM in Materials Modeling and Component Creep Life Prediction, J. Press. Vessel. Technol., 2000, 122(3), p 281–296CrossRef B. Dyson, Use of CDM in Materials Modeling and Component Creep Life Prediction, J. Press. Vessel. Technol., 2000, 122(3), p 281–296CrossRef
19.
Zurück zum Zitat Q. Xu, Z. Lu, and X. Wang, Damage Modelling: The Current State and the Latest Progress on the Development of Creep Damage Constitutive Equations for High Cr Steels, Mater. High Temp., 2017, 34(3), p 229–237CrossRef Q. Xu, Z. Lu, and X. Wang, Damage Modelling: The Current State and the Latest Progress on the Development of Creep Damage Constitutive Equations for High Cr Steels, Mater. High Temp., 2017, 34(3), p 229–237CrossRef
20.
Zurück zum Zitat Q. Xu, X. Yang, and Z. Lu, On the Development of Creep Damage Constitutive Equations: A Modified Hyperbolic Sine Law for Minimum Creep Strain Rate and Stress and Creep Fracture Criteria Based on Cavity Area Fraction along Grain Boundaries, Mater. High Temp., 2017, 34(5–6), p 323–332CrossRef Q. Xu, X. Yang, and Z. Lu, On the Development of Creep Damage Constitutive Equations: A Modified Hyperbolic Sine Law for Minimum Creep Strain Rate and Stress and Creep Fracture Criteria Based on Cavity Area Fraction along Grain Boundaries, Mater. High Temp., 2017, 34(5–6), p 323–332CrossRef
21.
Zurück zum Zitat Q. Xu, Development of Advanced Creep Damage Constitutive Equations for Low Cr Alloy under Long-Term Service, University of Huddersfield, Huddersfield, 2016 Q. Xu, Development of Advanced Creep Damage Constitutive Equations for Low Cr Alloy under Long-Term Service, University of Huddersfield, Huddersfield, 2016
22.
Zurück zum Zitat H.J. Frost and M.F. Ashby, Maps, the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982 H.J. Frost and M.F. Ashby, Maps, the Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982
23.
Zurück zum Zitat H.J. Frost and M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982 H.J. Frost and M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, 1982
24.
Zurück zum Zitat E. Robinson, Effect of Temperature Variation on the Long-Time Rupture Strength of Steels, Trans. ASME, 1952, 77. E. Robinson, Effect of Temperature Variation on the Long-Time Rupture Strength of Steels, Trans. ASME, 1952, 77.
25.
Zurück zum Zitat D. Liu, D.J. Pons, and E.H. Wong, Creep-Integrated Fatigue Equation for Metals, Int. J. Fatigue, 2017, 98, p 167–175CrossRef D. Liu, D.J. Pons, and E.H. Wong, Creep-Integrated Fatigue Equation for Metals, Int. J. Fatigue, 2017, 98, p 167–175CrossRef
26.
Zurück zum Zitat T. Rasiawan, The Influence of Prior Creep Damage on the Fracture Localisation in X20 CrMoV12-1 Cross-Weld Creep Tests, University of Cape Town, Cape Town, 2017 T. Rasiawan, The Influence of Prior Creep Damage on the Fracture Localisation in X20 CrMoV12-1 Cross-Weld Creep Tests, University of Cape Town, Cape Town, 2017
29.
Zurück zum Zitat S. Salifu, D. Desai, S. Kok, and O. Ogunbiyi, Thermo-Mechanical Stress Simulation of Unconstrained Region of Straight X20 Steam Pipe, Procedia Manuf., 2019, 35, p 1330–1336CrossRef S. Salifu, D. Desai, S. Kok, and O. Ogunbiyi, Thermo-Mechanical Stress Simulation of Unconstrained Region of Straight X20 Steam Pipe, Procedia Manuf., 2019, 35, p 1330–1336CrossRef
33.
Zurück zum Zitat S. Salifu, D. Desai, and S. Kok, Creep–Fatigue Interaction of P91 Steam Piping Subjected to Typical Start-up and Shutdown Cycles, J. Fail. Anal. Prevent., 2020, 20, p 1055–1064 S. Salifu, D. Desai, and S. Kok, Creep–Fatigue Interaction of P91 Steam Piping Subjected to Typical Start-up and Shutdown Cycles, J. Fail. Anal. Prevent., 2020, 20, p 1055–1064
34.
Zurück zum Zitat Dassault Simulia Systemes, ABAQUS 6.13 User’s manual. (Providence, RI, 2013) Dassault Simulia Systemes, ABAQUS 6.13 User’s manual. (Providence, RI, 2013)
35.
Zurück zum Zitat Dassault Simulia Systemes, fe-safe/TURBOlife User Manual. (Providence, RI, 2017), p. 122 Dassault Simulia Systemes, fe-safe/TURBOlife User Manual. (Providence, RI, 2017), p. 122
Metadaten
Titel
Prediction and Comparison of Creep Behavior of X20 Steam Plant Piping Network with Different Phenomenological Creep Models
verfasst von
Smith Salifu
Dawood Desai
Schalk Kok
Publikationsdatum
28.10.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-05235-5

Weitere Artikel der Ausgabe 11/2020

Journal of Materials Engineering and Performance 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.