Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2016

17.06.2016

Prediction of Forming Limit Curves from Hardness for Steels

verfasst von: Erik J. Pavlina, Chester J. Van Tyne

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents a method for predicting the strain-based forming limit curve (FLC) for steels using hardness. The stretching side (positive minor strain component) of the FLC was calculated by using a Marciniak-Kuczyński model with a non-quadratic yield function, while the drawing side (negative minor strain component) of the FLC was predicted based on the relationship between the major and minor critical strains, in accordance with the theory of maximum sheet tension for local necking. The requisite parameter that describes the plastic flow behavior (in this case, the strain hardening exponent) was calculated, based on correlations with the measured microhardness. Additionally, the strain rate sensitivity was considered in the model by using a newly developed empirical correlation between hardness and strain rate sensitivity. This hardness-based model was used to predict FLCs that demonstrate good agreement with experimental FLCs of a high-strength low-alloy steel and a dual-phase steel. Equations are provided that enable the calculation of the FLC from given hardness values for different severities of the material inhomogeneity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.P. Keeler and W.A. Backhofen, Plastic Instability and Fracture in Sheet Stretched over Rigid Punches, ASM Trans. Q., 1964, 56, p 25–48 S.P. Keeler and W.A. Backhofen, Plastic Instability and Fracture in Sheet Stretched over Rigid Punches, ASM Trans. Q., 1964, 56, p 25–48
2.
Zurück zum Zitat G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming in the Press Shop, SAE Paper 680093, 1968 G.M. Goodwin, Application of Strain Analysis to Sheet Metal Forming in the Press Shop, SAE Paper 680093, 1968
3.
Zurück zum Zitat Z. Marciniak and J.L. Duncan, The Mechanics of Sheet Metal Forming, Edward Arnold, London, 1992 Z. Marciniak and J.L. Duncan, The Mechanics of Sheet Metal Forming, Edward Arnold, London, 1992
4.
Zurück zum Zitat S.P. Keeler and W.G. Brazier, Relationship Between Laboratory Material Characterization and Press Shop Formability, Microalloying 75 Proceedings, Washington, DC, 1977, p 517–528. S.P. Keeler and W.G. Brazier, Relationship Between Laboratory Material Characterization and Press Shop Formability, Microalloying 75 Proceedings, Washington, DC, 1977, p 517–528.
5.
Zurück zum Zitat M.F. Shi, Strain hardening and forming limits of automotive steels. SAE Paper Number 950700, 1995. M.F. Shi, Strain hardening and forming limits of automotive steels. SAE Paper Number 950700, 1995.
6.
Zurück zum Zitat A. Konieczny, On Formability Assessment of the Automotive Dual Phase Steels, SAE2001-01-3075, Proceedings of SAE 2001 World Congress, SAE, Warrendale, 2001 A. Konieczny, On Formability Assessment of the Automotive Dual Phase Steels, SAE2001-01-3075, Proceedings of SAE 2001 World Congress, SAE, Warrendale, 2001
7.
Zurück zum Zitat F. Cayssails, A New Method for Predicting FLC, Proceeding of the 20th Biennial Congress of the IDDRG, Genval, 1998, p 443–454. F. Cayssails, A New Method for Predicting FLC, Proceeding of the 20th Biennial Congress of the IDDRG, Genval, 1998, p 443–454.
8.
Zurück zum Zitat F. Cayssails and X. LeMoine, Predictive Model of FLC (Arcelor model) Upgraded to UHSS Steels, Proceedings of the 2005 IDDRG Conference, Besançon, 2005 F. Cayssails and X. LeMoine, Predictive Model of FLC (Arcelor model) Upgraded to UHSS Steels, Proceedings of the 2005 IDDRG Conference, Besançon, 2005
9.
Zurück zum Zitat K.S. Raghavan, R.C. Van Kuren, and H. Darlington, Recent Progress in the Development of Forming Limit Curves for Automotive Sheet Steel. SAE Paper Number 920437, 1992 K.S. Raghavan, R.C. Van Kuren, and H. Darlington, Recent Progress in the Development of Forming Limit Curves for Automotive Sheet Steel. SAE Paper Number 920437, 1992
10.
Zurück zum Zitat M. Abspoel, M.E. Scholting, J.M.M. Droog, and N.J. Langarak, Predicting Forming Limit Curves from Mechanical Properties, Proceeding of 2013 IDDRG Conference, Mumbai, 2013, p 48–59. M. Abspoel, M.E. Scholting, J.M.M. Droog, and N.J. Langarak, Predicting Forming Limit Curves from Mechanical Properties, Proceeding of 2013 IDDRG Conference, Mumbai, 2013, p 48–59.
11.
Zurück zum Zitat J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The Determination of Yield Strength from Hardness Measurements, Metall. Trans., 1971, 2, p 1979–1983 J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The Determination of Yield Strength from Hardness Measurements, Metall. Trans., 1971, 2, p 1979–1983
12.
Zurück zum Zitat J.R. Cahoon, An Improved Equation Relating Hardness to Ultimate Strength, Metall. Trans., 1972, 3, p 3040CrossRef J.R. Cahoon, An Improved Equation Relating Hardness to Ultimate Strength, Metall. Trans., 1972, 3, p 3040CrossRef
13.
Zurück zum Zitat E.J. Pavlina and C.J. Van Tyne, Uniform Elongation and the Stress-Strain Flow Curve of Steels Calculated from Hardness Using Empirical Correlations, J. Mater. Eng. Perform., 2014, 23, p 2247–2253CrossRef E.J. Pavlina and C.J. Van Tyne, Uniform Elongation and the Stress-Strain Flow Curve of Steels Calculated from Hardness Using Empirical Correlations, J. Mater. Eng. Perform., 2014, 23, p 2247–2253CrossRef
14.
Zurück zum Zitat D. Tabor, The Hardness and Strength of Metals, J. Inst. Met., 1951, 79, p 1–18 D. Tabor, The Hardness and Strength of Metals, J. Inst. Met., 1951, 79, p 1–18
15.
Zurück zum Zitat X.-L. Gao, X.N. Jing, and G. Subhash, Two New Expanding Cavity Models for Indentation Deformations of Elastic Strain-hardening Materials, Int. J. Solids Struct., 2006, 43, p 2193–2208CrossRef X.-L. Gao, X.N. Jing, and G. Subhash, Two New Expanding Cavity Models for Indentation Deformations of Elastic Strain-hardening Materials, Int. J. Solids Struct., 2006, 43, p 2193–2208CrossRef
16.
Zurück zum Zitat N.A. Branch, G. Subhash, N.K. Arakere, and M.A. Klecka, A New Reverse Analysis to Determine the Constitutive Response of Plastically Graded Case Hardened Bearing Steels, Int. J. Solids Struct., 2011, 48, p 584–591CrossRef N.A. Branch, G. Subhash, N.K. Arakere, and M.A. Klecka, A New Reverse Analysis to Determine the Constitutive Response of Plastically Graded Case Hardened Bearing Steels, Int. J. Solids Struct., 2011, 48, p 584–591CrossRef
17.
Zurück zum Zitat E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17, p 888–893CrossRef E.J. Pavlina and C.J. Van Tyne, Correlation of Yield Strength and Tensile Strength with Hardness for Steels, J. Mater. Eng. Perform., 2008, 17, p 888–893CrossRef
18.
Zurück zum Zitat Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620CrossRef Z. Marciniak and K. Kuczyński, Limit Strains in the Processes of Stretch-forming Sheet Metal, Int. J. Mech. Sci., 1967, 9, p 609–620CrossRef
19.
Zurück zum Zitat A. Graf and W. Hosford, Calculations of Forming Limit Diagrams, Metall. Trans. A, 1990, 21, p 87–94CrossRef A. Graf and W. Hosford, Calculations of Forming Limit Diagrams, Metall. Trans. A, 1990, 21, p 87–94CrossRef
20.
Zurück zum Zitat A. Ghazanfari and A. Assempour, Calibration of Forming Limit Diagrams Using a Modified Marciniak-Kuczynski Model and an Empirical Law, Mater. Des., 2012, 34, p 185–191CrossRef A. Ghazanfari and A. Assempour, Calibration of Forming Limit Diagrams Using a Modified Marciniak-Kuczynski Model and an Empirical Law, Mater. Des., 2012, 34, p 185–191CrossRef
21.
Zurück zum Zitat L.C. Chan and X.Z. Lu, Material Sensitivity and Formability Prediction of Warm-forming Magnesium Alloy Sheets with Experimental Verification, Int. J. Adv. Manuf. Technol., 2014, 71, p 253–262CrossRef L.C. Chan and X.Z. Lu, Material Sensitivity and Formability Prediction of Warm-forming Magnesium Alloy Sheets with Experimental Verification, Int. J. Adv. Manuf. Technol., 2014, 71, p 253–262CrossRef
22.
Zurück zum Zitat T.J. McCarron, K.E. Kain, G.T. Hahn, and W.F. Flanagan, Effect of Geometrical Defects in Forming Sheet Steels by Biaxial Stretching, Metall. Trans. A, 1988, 19, p 2067–2074CrossRef T.J. McCarron, K.E. Kain, G.T. Hahn, and W.F. Flanagan, Effect of Geometrical Defects in Forming Sheet Steels by Biaxial Stretching, Metall. Trans. A, 1988, 19, p 2067–2074CrossRef
23.
Zurück zum Zitat R. Logan and W.F. Hosford, Upper-bound Anisotropic Yield Locus Calculations Assuming<111>-pencil Glide, Int. J. Mech. Sci., 1980, 22, p 419–430CrossRef R. Logan and W.F. Hosford, Upper-bound Anisotropic Yield Locus Calculations Assuming<111>-pencil Glide, Int. J. Mech. Sci., 1980, 22, p 419–430CrossRef
24.
Zurück zum Zitat A.K. Ghosh, The Effect of Lateral Drawing-in on Stretch Formability, Met. Eng. Q., 1979, 15, p 53–64 A.K. Ghosh, The Effect of Lateral Drawing-in on Stretch Formability, Met. Eng. Q., 1979, 15, p 53–64
25.
Zurück zum Zitat F. Barlat, Crystallographic Texture, Anisotropic Yield Surfaces and Forming Limits of Sheet Metals, Mater. Sci. Eng., 1987, 91, p 55–72CrossRef F. Barlat, Crystallographic Texture, Anisotropic Yield Surfaces and Forming Limits of Sheet Metals, Mater. Sci. Eng., 1987, 91, p 55–72CrossRef
26.
Zurück zum Zitat P. Larour, “Strain Rate Sensitivity of Automotive Sheet Steels: Influence of Plastic Strain, Strain Rate, Temperature, Microstructure, Bake Hardening and Pre-strain,” PhD dissertation, RWTH Aachen University, 2010 P. Larour, “Strain Rate Sensitivity of Automotive Sheet Steels: Influence of Plastic Strain, Strain Rate, Temperature, Microstructure, Bake Hardening and Pre-strain,” PhD dissertation, RWTH Aachen University, 2010
27.
Zurück zum Zitat B.S. Levy, A Comparison of Empirical Forming Limit Curves for Low Carbon Steel with Theoretical Forming Limit Curves of Ramaekers and Bongaerts, IDDRG WG3, Ungarn, June 13–14, 1996 B.S. Levy, A Comparison of Empirical Forming Limit Curves for Low Carbon Steel with Theoretical Forming Limit Curves of Ramaekers and Bongaerts, IDDRG WG3, Ungarn, June 13–14, 1996
28.
Zurück zum Zitat S.S. Hecker, A Simple Forming Limit Curve Technique and Results on Aluminum Alloys, IDDRG 7th Biennial Congress, 1972, p 5.1–5.26 S.S. Hecker, A Simple Forming Limit Curve Technique and Results on Aluminum Alloys, IDDRG 7th Biennial Congress, 1972, p 5.1–5.26
29.
Zurück zum Zitat W. Bleck, Z. Deng, K. Papamantellos, and C.O. Gusek, A Comparative Study of the Forming-limit Diagram Models for Sheet Steels, J. Mater. Proc. Technol., 1998, 83, p 223–230CrossRef W. Bleck, Z. Deng, K. Papamantellos, and C.O. Gusek, A Comparative Study of the Forming-limit Diagram Models for Sheet Steels, J. Mater. Proc. Technol., 1998, 83, p 223–230CrossRef
30.
Zurück zum Zitat J.H. Percy, The Effect of Strain Rate on the Forming Limit Diagram for Sheet Metal, CIRP Ann., 1980, 29, p 151–152CrossRef J.H. Percy, The Effect of Strain Rate on the Forming Limit Diagram for Sheet Metal, CIRP Ann., 1980, 29, p 151–152CrossRef
31.
Zurück zum Zitat A.M. Brown, A Step-by-step Guide to Non-linear Regression Analysis of Experimental Data Using a Microsoft Excel Spreadsheet, Comput. Methods Progr. Biomed., 2001, 65, p 191–200CrossRef A.M. Brown, A Step-by-step Guide to Non-linear Regression Analysis of Experimental Data Using a Microsoft Excel Spreadsheet, Comput. Methods Progr. Biomed., 2001, 65, p 191–200CrossRef
32.
Zurück zum Zitat B.S. Levy and D.E. Green, Enhanced Forming Limit Diagram—Project Team Research Report, Auto/Steel Partnership, Southfield, MI, 2002 B.S. Levy and D.E. Green, Enhanced Forming Limit Diagram—Project Team Research Report, Auto/Steel Partnership, Southfield, MI, 2002
Metadaten
Titel
Prediction of Forming Limit Curves from Hardness for Steels
verfasst von
Erik J. Pavlina
Chester J. Van Tyne
Publikationsdatum
17.06.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2115-3

Weitere Artikel der Ausgabe 8/2016

Journal of Materials Engineering and Performance 8/2016 Zur Ausgabe

EditorialNotes

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.