Skip to main content
Erschienen in: Journal of Iron and Steel Research International 10/2020

29.06.2020 | Original Paper

Prediction of maximum carbon element content in continuous casting billets of 82B cord steel based on statistics of extreme values method

verfasst von: Dong-wei Guo, Zi-bing Hou, Jiang-hai Cao, Zhong-ao Guo, Yi Chang, Guang-hua Wen

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 10/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The research of carbon content along the casting direction of 82B cord steel billets is of great significance for improving the quality of cord products from subsequent processing. However, the traditional segregation and billets quality evaluation methods have certain limitations, such as sampling length and analysis area, which affect the accuracy of quality judgment. Thus, the statistics of extreme values (SEV) was introduced to predict the maximum value of carbon element content along the casting direction, which can quantitatively characterize the segregation degree. The size of the selected billet is 150 mm × 150 mm, and the sampling location is the centerline of the billet. The experiment was conducted by considering the effect of cooling intensity and casting speed on the maximum value of carbon element content. Firstly, the calculation results show that the SEV method can predict the maximum value of carbon element content along the casting direction of 82B cord steel, and the SEV method is proved to be effective by analyzing the carbon distribution and fluctuation in billets. To some extent, the SEV method can break the limitations of the sampling length and analysis area by predicting the maximum value of carbon element on a larger range of continuous casting billets with few samples. During the continuous casting process, the increase in cooling intensity makes the surface shrinking rate increase, which can slow down the flow of solute-enriched liquid to the center, and the center segregation can be reduced. On the other hand, the function area of the final electromagnetic stirring can be expanded with the increase in the casting speed, which can reduce the concentration of carbon element in the center of the billets and reduce the maximum value of carbon element content. It can provide a new theoretical reference for the quantitative calculation of carbon content in continuous casting billets and the quality evaluation of continuous casting billets.
Literatur
[1]
Zurück zum Zitat J. Li, D.W. Yu, W.L. Zheng, L.L. Zhu, C. Zhang, Iron and Steel 40 (2005) No. 2, 66–68. J. Li, D.W. Yu, W.L. Zheng, L.L. Zhu, C. Zhang, Iron and Steel 40 (2005) No. 2, 66–68.
[2]
[3]
Zurück zum Zitat Y. Chang, Z.B. Hou, W. Wang, Y. Xu, Iron and Steel 51 (2016) No. 11, 43–48. Y. Chang, Z.B. Hou, W. Wang, Y. Xu, Iron and Steel 51 (2016) No. 11, 43–48.
[4]
Zurück zum Zitat K. Ayata, T. Mori, T. Fujimoto, T. Ohnishi, I. Wakasugi, Trans. ISIJ 24 (1984) 931–939.CrossRef K. Ayata, T. Mori, T. Fujimoto, T. Ohnishi, I. Wakasugi, Trans. ISIJ 24 (1984) 931–939.CrossRef
[6]
Zurück zum Zitat O. Bode, K. Schwerdtfeger, H.G. Geck, F. Höfer, Ironmak. Steelmak. 35 (2008) 137–145.CrossRef O. Bode, K. Schwerdtfeger, H.G. Geck, F. Höfer, Ironmak. Steelmak. 35 (2008) 137–145.CrossRef
[7]
Zurück zum Zitat Z.B. Hou, G.G. Cheng, C.C. Wu, C. Chen, Metall. Mater. Trans. B 43 (2012) 1517–1529.CrossRef Z.B. Hou, G.G. Cheng, C.C. Wu, C. Chen, Metall. Mater. Trans. B 43 (2012) 1517–1529.CrossRef
[8]
Zurück zum Zitat Z.B. Hou, G.H. Wen, P. Tang, G.G. Cheng, Metall. Mater. Trans. B 45 (2014) 1817–1826.CrossRef Z.B. Hou, G.H. Wen, P. Tang, G.G. Cheng, Metall. Mater. Trans. B 45 (2014) 1817–1826.CrossRef
[9]
Zurück zum Zitat Z.B. Hou, R. Xu, Y. Chang, J.H. Cao, G.H. Wen, P. Tang, Acta Metall. Sin. 54 (2018) 851–858. Z.B. Hou, R. Xu, Y. Chang, J.H. Cao, G.H. Wen, P. Tang, Acta Metall. Sin. 54 (2018) 851–858.
[10]
Zurück zum Zitat C.W. Anderson, G. Shi, H.V. Atkinson, C.M. Sellars, J.R. Yates, Acta Mater. 51 (2003) 2331–2343.CrossRef C.W. Anderson, G. Shi, H.V. Atkinson, C.M. Sellars, J.R. Yates, Acta Mater. 51 (2003) 2331–2343.CrossRef
[11]
Zurück zum Zitat Y. Murakami, Y. Uemura, K. Kawakami, Trans. Jpn. Soc. Mech. Eng. 55 (1989) 58–62. Y. Murakami, Y. Uemura, K. Kawakami, Trans. Jpn. Soc. Mech. Eng. 55 (1989) 58–62.
[12]
[13]
Zurück zum Zitat J.M. Zhang, J.F. Zhang, Z.G. Yang, S.X. Li, W.J. Hui, Y.Q. Weng, Acta Metall. Sin. 40 (2004) 846–850. J.M. Zhang, J.F. Zhang, Z.G. Yang, S.X. Li, W.J. Hui, Y.Q. Weng, Acta Metall. Sin. 40 (2004) 846–850.
[14]
Zurück zum Zitat C. Tian, J.H. Liu, J.W. Fan, H.C. Lu, H. Dong, J. Iron Steel Res. 30 (2018) 127–131. C. Tian, J.H. Liu, J.W. Fan, H.C. Lu, H. Dong, J. Iron Steel Res. 30 (2018) 127–131.
[15]
Zurück zum Zitat P.A. Scarf, P.J. Laycock, J. Res. Natl. Inst. Stand. Technol. 99 (1994) 313.CrossRef P.A. Scarf, P.J. Laycock, J. Res. Natl. Inst. Stand. Technol. 99 (1994) 313.CrossRef
[16]
Zurück zum Zitat C.W. Anderson, G. Shi, H.V. Atkinson, C.M. Sellars, Acta Mater. 48 (2000) 4235–4246.CrossRef C.W. Anderson, G. Shi, H.V. Atkinson, C.M. Sellars, Acta Mater. 48 (2000) 4235–4246.CrossRef
[17]
Zurück zum Zitat G. Shi, H.V. Atkinson, C.M. Sellars, C.W. Anderson, Ironmak. Steelmak. 26 (1999) 239–246.CrossRef G. Shi, H.V. Atkinson, C.M. Sellars, C.W. Anderson, Ironmak. Steelmak. 26 (1999) 239–246.CrossRef
[18]
Zurück zum Zitat S. Beretta, Y. Murakami, Fatigue Fract. Engng. Mater. Struct. 21 (1998) 1049–1065.CrossRef S. Beretta, Y. Murakami, Fatigue Fract. Engng. Mater. Struct. 21 (1998) 1049–1065.CrossRef
[19]
Zurück zum Zitat W. Yang, S.T. Qiu, H.B. Tao, H.C. Yan, J.H. Lu, P. Zhao, Iron and Steel 45 (2010) No. 2, 45–48. W. Yang, S.T. Qiu, H.B. Tao, H.C. Yan, J.H. Lu, P. Zhao, Iron and Steel 45 (2010) No. 2, 45–48.
[20]
Zurück zum Zitat P. Li, L. Wang, Q.F. Zhou, J. Iron Steel Res. 26 (2014) No. 9, 33–36. P. Li, L. Wang, Q.F. Zhou, J. Iron Steel Res. 26 (2014) No. 9, 33–36.
[21]
Zurück zum Zitat G. Engström, H. Fredriksson, B. Rogberg, Scand. J. Metall. 12 (1983) 3–12. G. Engström, H. Fredriksson, B. Rogberg, Scand. J. Metall. 12 (1983) 3–12.
[22]
Zurück zum Zitat P. Sivesson, C.M. Raihle, J. Konttinen, Mater. Sci. Eng. A 173 (1993) 299–304.CrossRef P. Sivesson, C.M. Raihle, J. Konttinen, Mater. Sci. Eng. A 173 (1993) 299–304.CrossRef
[23]
Zurück zum Zitat T.B. Abbott, I.B. Hoyle, A.S. Woodyatt, Steel Res. 65 (1994) 128–131.CrossRef T.B. Abbott, I.B. Hoyle, A.S. Woodyatt, Steel Res. 65 (1994) 128–131.CrossRef
[24]
Zurück zum Zitat J. Feng, W.Q. Chen, X.F. Wang, Q.X. Wang, W. Su, Iron and steel 41 (2006) No.11, 26–28. J. Feng, W.Q. Chen, X.F. Wang, Q.X. Wang, W. Su, Iron and steel 41 (2006) No.11, 26–28.
[25]
Zurück zum Zitat J.C. Li, B.F. Wang, Y.L. Ma, J.Z. Cui, Mater. Sci. Eng. A 425 (2006) 201–204.CrossRef J.C. Li, B.F. Wang, Y.L. Ma, J.Z. Cui, Mater. Sci. Eng. A 425 (2006) 201–204.CrossRef
Metadaten
Titel
Prediction of maximum carbon element content in continuous casting billets of 82B cord steel based on statistics of extreme values method
verfasst von
Dong-wei Guo
Zi-bing Hou
Jiang-hai Cao
Zhong-ao Guo
Yi Chang
Guang-hua Wen
Publikationsdatum
29.06.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 10/2020
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00448-3

Weitere Artikel der Ausgabe 10/2020

Journal of Iron and Steel Research International 10/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.