Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2017

22.04.2017

Predictive control of intersegmental tarsal movements in an insect

verfasst von: Alicia Costalago-Meruelo, David M. Simpson, Sandor M. Veres, Philip L. Newland

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In many animals intersegmental reflexes are important for postural and movement control but are still poorly undesrtood. Mathematical methods can be used to model the responses to stimulation, and thus go beyond a simple description of responses to specific inputs. Here we analyse an intersegmental reflex of the foot (tarsus) of the locust hind leg, which raises the tarsus when the tibia is flexed and depresses it when the tibia is extended. A novel method is described to measure and quantify the intersegmental responses of the tarsus to a stimulus to the femoro-tibial chordotonal organ. An Artificial Neural Network, the Time Delay Neural Network, was applied to understand the properties and dynamics of the reflex responses. The aim of this study was twofold: first to develop an accurate method to record and analyse the movement of an appendage and second, to apply methods to model the responses using Artificial Neural Networks. The results show that Artificial Neural Networks provide accurate predictions of tarsal movement when trained with an average reflex response to Gaussian White Noise stimulation compared to linear models. Furthermore, the Artificial Neural Network model can predict the individual responses of each animal and responses to others inputs such as a sinusoid. A detailed understanding of such a reflex response could be included in the design of orthoses or functional electrical stimulation treatments to improve walking in patients with neurological disorders as well as the bio/inspired design of robots.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Angarita-Jaimes, N., Dewhirst, O. P., Simpson, D. M., Kondoh, Y., Allen, R., & Newland, P. L. (2012). The dynamics of analogue signalling in local networks controlling limb movement. European Journal of Neuroscience, 36(9), 3269–3282.CrossRefPubMed Angarita-Jaimes, N., Dewhirst, O. P., Simpson, D. M., Kondoh, Y., Allen, R., & Newland, P. L. (2012). The dynamics of analogue signalling in local networks controlling limb movement. European Journal of Neuroscience, 36(9), 3269–3282.CrossRefPubMed
Zurück zum Zitat Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1), 54–65.CrossRefPubMed Angeline, P. J., Saunders, G. M., & Pollack, J. B. (1994). An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks, 5(1), 54–65.CrossRefPubMed
Zurück zum Zitat Au, S. K., & Herr, H. M. (2008). Powered ankle-foot prosthesis. IEEE Robotics and Automation Magazine, 15(3), 52–59.CrossRef Au, S. K., & Herr, H. M. (2008). Powered ankle-foot prosthesis. IEEE Robotics and Automation Magazine, 15(3), 52–59.CrossRef
Zurück zum Zitat Bares, J. E. (1999). Dante II: technical description, results, and lessons learned. The International Journal of Robotics Research, 18(7), 621–649.CrossRef Bares, J. E. (1999). Dante II: technical description, results, and lessons learned. The International Journal of Robotics Research, 18(7), 621–649.CrossRef
Zurück zum Zitat Beer, R. D., Quinn, R. D., Chiel, H. J., & Ritzmann, R. E. (1997). Biologically inspired approaches to robotics: what can we learn from insects? Communications of the ACM, 40(3), 30–38.CrossRef Beer, R. D., Quinn, R. D., Chiel, H. J., & Ritzmann, R. E. (1997). Biologically inspired approaches to robotics: what can we learn from insects? Communications of the ACM, 40(3), 30–38.CrossRef
Zurück zum Zitat Bishop, C. M., Lange, N., & Ripley, B. D. (1995). Neural networks for pattern recognition (Vol. 92). London: Oxford University Press. Bishop, C. M., Lange, N., & Ripley, B. D. (1995). Neural networks for pattern recognition (Vol. 92). London: Oxford University Press.
Zurück zum Zitat Burrows, M. (1996). The neurobiology of an insect brain. Oxford: Oxford University Press.CrossRef Burrows, M. (1996). The neurobiology of an insect brain. Oxford: Oxford University Press.CrossRef
Zurück zum Zitat Burrows, M., & Horridge, G. A. (1974). The organization of inputs to motoneurons of the locust metathoracic leg. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 269(896), 49–94.CrossRefPubMed Burrows, M., & Horridge, G. A. (1974). The organization of inputs to motoneurons of the locust metathoracic leg. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 269(896), 49–94.CrossRefPubMed
Zurück zum Zitat Büschges, A., & Gruhn, M. (2007). Mechanosensory feedback in walking: from joint control to locomotor patterns. In Insect mechanics and control (Vol. 34, pp. 193–230). Academic Press. Büschges, A., & Gruhn, M. (2007). Mechanosensory feedback in walking: from joint control to locomotor patterns. In Insect mechanics and control (Vol. 34, pp. 193–230). Academic Press.
Zurück zum Zitat Büschges, A., Kittmann, R., & Schmitz, J. (1994). Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. Journal of Comparative Physiology A, 174(6), 685–700.CrossRef Büschges, A., Kittmann, R., & Schmitz, J. (1994). Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. Journal of Comparative Physiology A, 174(6), 685–700.CrossRef
Zurück zum Zitat Chen, D., Yin, J., Zhao, K., Zheng, W., & Wang, T. (2011). Bionic mechanism and kinematics analysis of hopping robot inspired by locust jumping. Journal of Bionic Engineering, 8(4), 429–439.CrossRef Chen, D., Yin, J., Zhao, K., Zheng, W., & Wang, T. (2011). Bionic mechanism and kinematics analysis of hopping robot inspired by locust jumping. Journal of Bionic Engineering, 8(4), 429–439.CrossRef
Zurück zum Zitat Clarac, F., Vedel, J. P., & Bush, B. M. (1978). Intersegmental reflex coordination by a single joint receptor organ (CB) in rock lobster walking legs. The Journal of Experimental Biology, 73, 29–46.PubMed Clarac, F., Vedel, J. P., & Bush, B. M. (1978). Intersegmental reflex coordination by a single joint receptor organ (CB) in rock lobster walking legs. The Journal of Experimental Biology, 73, 29–46.PubMed
Zurück zum Zitat Costalago Meruelo, A., Simpson, D. M., Veres, S. M., & Newland, P. L. (2016). Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron. Neural Networks, 75, 56–65.CrossRefPubMed Costalago Meruelo, A., Simpson, D. M., Veres, S. M., & Newland, P. L. (2016). Improved system identification using artificial neural networks and analysis of individual differences in responses of an identified neuron. Neural Networks, 75, 56–65.CrossRefPubMed
Zurück zum Zitat Cruse, H., Dautenhahn, K., & Schreiner, H. (1992). Coactivation of leg reflexes in the stick insect. Biological Cybernetics, 67(4), 369–375.CrossRef Cruse, H., Dautenhahn, K., & Schreiner, H. (1992). Coactivation of leg reflexes in the stick insect. Biological Cybernetics, 67(4), 369–375.CrossRef
Zurück zum Zitat Cruse, H., Kindermann, T., Schumm, M., Dean, J., & Schmitz, J. (1998). Walknet—a biologically inspired network to control six-legged walking. Neural Networks, 11(7–8), 1435–1447.CrossRefPubMed Cruse, H., Kindermann, T., Schumm, M., Dean, J., & Schmitz, J. (1998). Walknet—a biologically inspired network to control six-legged walking. Neural Networks, 11(7–8), 1435–1447.CrossRefPubMed
Zurück zum Zitat Delcomyn, F., & Nelson, M. E. (2000). Architectures for a biomimetic hexapod robot. Robotics and Autonomous Systems, 30(1), 5–15.CrossRef Delcomyn, F., & Nelson, M. E. (2000). Architectures for a biomimetic hexapod robot. Robotics and Autonomous Systems, 30(1), 5–15.CrossRef
Zurück zum Zitat Dewhirst, O. P. (2012). Nonlinear system analysis of local reflex control of locust hind limbs by, PhD thesis, University of Southampton. Dewhirst, O. P. (2012). Nonlinear system analysis of local reflex control of locust hind limbs by, PhD thesis, University of Southampton.
Zurück zum Zitat Dewhirst, O. P., Angarita-Jaimes, N., Simpson, D. M., Allen, R., & Newland, P. L. (2013). A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs. Journal of Computational Neuroscience, 34(1), 39–58.CrossRefPubMed Dewhirst, O. P., Angarita-Jaimes, N., Simpson, D. M., Allen, R., & Newland, P. L. (2013). A system identification analysis of neural adaptation dynamics and nonlinear responses in the local reflex control of locust hind limbs. Journal of Computational Neuroscience, 34(1), 39–58.CrossRefPubMed
Zurück zum Zitat Dürr, V., Schmitz, J., & Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure and Development, 33(3), 237–250.CrossRefPubMed Dürr, V., Schmitz, J., & Cruse, H. (2004). Behaviour-based modelling of hexapod locomotion: linking biology and technical application. Arthropod Structure and Development, 33(3), 237–250.CrossRefPubMed
Zurück zum Zitat Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Springer Science & Business Media. Eiben, A. E., & Smith, J. E. (2003). Introduction to evolutionary computing. Springer Science & Business Media.
Zurück zum Zitat Endo, W., Santos, F. P., Simpson, D., Maciel, C. D., & Newland, P. L. (2015). Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. Journal of Computational Neuroscience, 38(2), 427–438.CrossRefPubMed Endo, W., Santos, F. P., Simpson, D., Maciel, C. D., & Newland, P. L. (2015). Delayed mutual information infers patterns of synaptic connectivity in a proprioceptive neural network. Journal of Computational Neuroscience, 38(2), 427–438.CrossRefPubMed
Zurück zum Zitat Espenschied, K. S., Chiel, H. J., Quinn, R. D., & Beer, R. D. (1993). Leg coordination mechanisms in the stick insect applied to hexapod robot locomotion. Adaptive Behavior, 1(4), 455–468.CrossRef Espenschied, K. S., Chiel, H. J., Quinn, R. D., & Beer, R. D. (1993). Leg coordination mechanisms in the stick insect applied to hexapod robot locomotion. Adaptive Behavior, 1(4), 455–468.CrossRef
Zurück zum Zitat Espenschied, K. S., Quinn, R. D., Beer, R. D., & Chiel, H. J. (1996). Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems, 18(1–2), 59–64.CrossRef Espenschied, K. S., Quinn, R. D., Beer, R. D., & Chiel, H. J. (1996). Biologically based distributed control and local reflexes improve rough terrain locomotion in a hexapod robot. Robotics and Autonomous Systems, 18(1–2), 59–64.CrossRef
Zurück zum Zitat Field, L. H., & Burrows, M. (1982). Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. Journal of Experimental Biology, 101(1), 265–285. Field, L. H., & Burrows, M. (1982). Reflex effects of the femoral chordotonal organ upon leg motor neurones of the locust. Journal of Experimental Biology, 101(1), 265–285.
Zurück zum Zitat Field, L. H., & Rind, F. C. (1981). A single insect chordotonal organ mediates inter-and intra-segmental leg reflexes. Comparative Biochemistry and Physiology Part A, 68(1), 99–102.CrossRef Field, L. H., & Rind, F. C. (1981). A single insect chordotonal organ mediates inter-and intra-segmental leg reflexes. Comparative Biochemistry and Physiology Part A, 68(1), 99–102.CrossRef
Zurück zum Zitat Gandevia, S. C., Refshauge, K. M., & Collins, D. F. (2002). Proprioception: peripheral inputs and perceptual interactions BT - sensorimotor control of movement and posture. Boston: Springer. Gandevia, S. C., Refshauge, K. M., & Collins, D. F. (2002). Proprioception: peripheral inputs and perceptual interactions BT - sensorimotor control of movement and posture. Boston: Springer.
Zurück zum Zitat Goble, D. J., Coxon, J. P., Wenderoth, N., Van Impe, A., & Swinnen, S. P. (2009). Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 33(3), 271–278. Goble, D. J., Coxon, J. P., Wenderoth, N., Van Impe, A., & Swinnen, S. P. (2009). Proprioceptive sensibility in the elderly: degeneration, functional consequences and plastic-adaptive processes. Neuroscience and Biobehavioral Reviews, 33(3), 271–278.
Zurück zum Zitat Halbertsma, J. M. (1983). The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiologica Scandinavica. Supplementum, 521, 1–75.PubMed Halbertsma, J. M. (1983). The stride cycle of the cat: the modelling of locomotion by computerized analysis of automatic recordings. Acta Physiologica Scandinavica. Supplementum, 521, 1–75.PubMed
Zurück zum Zitat Hanson, M. A., Burton, A. K., Kendall, N. A. S., Lancaster, R. J., & Pilkington, A. (2006). The costs and benefits of active case management and rehabilitation for musculoskeletal disorders, Prepared by Hu-Tech Associates Ltd for the Health and Safety Executive, London, 2006. Hanson, M. A., Burton, A. K., Kendall, N. A. S., Lancaster, R. J., & Pilkington, A. (2006). The costs and benefits of active case management and rehabilitation for musculoskeletal disorders, Prepared by Hu-Tech Associates Ltd for the Health and Safety Executive, London, 2006.
Zurück zum Zitat Haykin, S. (2004). Neural networks: a comprehensive foundation (Vol. 2). Englewood Cliffs: Prentice Hall. Haykin, S. (2004). Neural networks: a comprehensive foundation (Vol. 2). Englewood Cliffs: Prentice Hall.
Zurück zum Zitat He, J., Maltenfort, M., Wang, Q. W. Q., & Hamm, T. (2001). Learning from biological systems: modeling neural control. IEEE Control Systems Magazine, 21(4), 55–69.CrossRef He, J., Maltenfort, M., Wang, Q. W. Q., & Hamm, T. (2001). Learning from biological systems: modeling neural control. IEEE Control Systems Magazine, 21(4), 55–69.CrossRef
Zurück zum Zitat Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21(4), 642–653.CrossRefPubMed Ijspeert, A. J. (2008). Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 21(4), 642–653.CrossRefPubMed
Zurück zum Zitat Jiménez-Fabián, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering and Physics, 34(4), 397–408.CrossRefPubMed Jiménez-Fabián, R., & Verlinden, O. (2012). Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons. Medical Engineering and Physics, 34(4), 397–408.CrossRefPubMed
Zurück zum Zitat John, H. (1992). Holland, Adaptation in natural and artificial systems. Cambridge: MIT Press. John, H. (1992). Holland, Adaptation in natural and artificial systems. Cambridge: MIT Press.
Zurück zum Zitat Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95—international conference on neural networks. (Vol. 4, pp. 1942–1948). IEEE. Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN’95—international conference on neural networks. (Vol. 4, pp. 1942–1948). IEEE.
Zurück zum Zitat Kondoh, Y., Okuma, J., & Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5), 1829–1842.PubMed Kondoh, Y., Okuma, J., & Newland, P. L. (1995). Dynamics of neurons controlling movements of a locust hind leg: Wiener kernel analysis of the responses of proprioceptive afferents. Journal of Neurophysiology, 73(5), 1829–1842.PubMed
Zurück zum Zitat Kovač, M., Fuchs, M., Guignard, A., Zufferey, J. C., & Floreano, D. (2008). A miniature 7g jumping robot. In Proceedings—IEEE international conference on robotics and automation (pp. 373–378). Kovač, M., Fuchs, M., Guignard, A., Zufferey, J. C., & Floreano, D. (2008). A miniature 7g jumping robot. In Proceedings—IEEE international conference on robotics and automation (pp. 373–378).
Zurück zum Zitat Lewinger, W. A., Reekie, H. M., & Webb, B. (2011). A hexapod robot modeled on the stick insect. In IEEE 15th international conference on advanced robotics: new boundaries for robotics (pp. 541–548). ICAR 2011’. Lewinger, W. A., Reekie, H. M., & Webb, B. (2011). A hexapod robot modeled on the stick insect. In IEEE 15th international conference on advanced robotics: new boundaries for robotics (pp. 541–548). ICAR 2011’.
Zurück zum Zitat Ljung, L. (1998). System identification. In Signal analysis and prediction (pp. 163–173). Springer. Ljung, L. (1998). System identification. In Signal analysis and prediction (pp. 163–173). Springer.
Zurück zum Zitat Marder, E., & Taylor, A. L. (2011). Multiple models to capture the variability in biological neurons and networks. Nature Neuroscience, 14(2), 133–138.CrossRefPubMedPubMedCentral Marder, E., & Taylor, A. L. (2011). Multiple models to capture the variability in biological neurons and networks. Nature Neuroscience, 14(2), 133–138.CrossRefPubMedPubMedCentral
Zurück zum Zitat Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems (Vol. 10). New York: Wiley.CrossRef Marmarelis, V. Z. (2004). Nonlinear dynamic modeling of physiological systems (Vol. 10). New York: Wiley.CrossRef
Zurück zum Zitat Newland, P. L., & Kondoh, Y. (1997a). Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. Journal of Neurophysiology, 77(4), 1731–1746. Newland, P. L., & Kondoh, Y. (1997a). Dynamics of neurons controlling movements of a locust hind leg II. Flexor tibiae motor neurons. Journal of Neurophysiology, 77(4), 1731–1746.
Zurück zum Zitat Newland, P. L., & Kondoh, Y. (1997b). Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons. Journal of Neurophysiology, 77(6), 3297–3310. Newland, P. L., & Kondoh, Y. (1997b). Dynamics of neurons controlling movements of a locust hind leg. III. Extensor tibiae motor neurons. Journal of Neurophysiology, 77(6), 3297–3310.
Zurück zum Zitat Pearson, K. G. (1993). Common principles of motor control in vertebrates and invertebrates. Annual Review of Neuroscience, 16, 265–297.CrossRefPubMed Pearson, K. G. (1993). Common principles of motor control in vertebrates and invertebrates. Annual Review of Neuroscience, 16, 265–297.CrossRefPubMed
Zurück zum Zitat Pearson, K. G. (1995). Proprioceptive regulation of locomotion. Current Opinion in Neurobiology, 5(6), 786–791.CrossRefPubMed Pearson, K. G. (1995). Proprioceptive regulation of locomotion. Current Opinion in Neurobiology, 5(6), 786–791.CrossRefPubMed
Zurück zum Zitat Ritzmann, R. E., & Büschges, A. (2007). Adaptive motor behavior in insects. Current Opinion in Neurobiology, 17(6), 629–636.CrossRefPubMed Ritzmann, R. E., & Büschges, A. (2007). Adaptive motor behavior in insects. Current Opinion in Neurobiology, 17(6), 629–636.CrossRefPubMed
Zurück zum Zitat Ritzmann, R. E., Quinn, R. D., & Fischer, M. S. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure and Development, 33(3), 361–379.CrossRefPubMed Ritzmann, R. E., Quinn, R. D., & Fischer, M. S. (2004). Convergent evolution and locomotion through complex terrain by insects, vertebrates and robots. Arthropod Structure and Development, 33(3), 361–379.CrossRefPubMed
Zurück zum Zitat Rushton, D. N. (1997). Functional electrical stimulation. Physiological Measurements, 18(4), 241–75.CrossRef Rushton, D. N. (1997). Functional electrical stimulation. Physiological Measurements, 18(4), 241–75.CrossRef
Zurück zum Zitat Schneidman, E., Brenner, N., Tishby, N., van Steveninck, R. R. D. R., & Bialek, W. (2000). Universality and individuality in a neural code. ArXiv Physics e-prints p. 16. Schneidman, E., Brenner, N., Tishby, N., van Steveninck, R. R. D. R., & Bialek, W. (2000). Universality and individuality in a neural code. ArXiv Physics e-prints p. 16.
Zurück zum Zitat Shultz, A. H., Lawson, B. E., & Goldfarb, M. (2016). Variable cadence walking and ground adaptive standing with a powered ankle prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24 (4), 495–505.CrossRefPubMed Shultz, A. H., Lawson, B. E., & Goldfarb, M. (2016). Variable cadence walking and ground adaptive standing with a powered ankle prosthesis. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24 (4), 495–505.CrossRefPubMed
Zurück zum Zitat Sietsma, J., & Dow, R. J. F. (1991). Creating artificial neural networks that generalize. Neural Networks, 4 (1), 67–79.CrossRef Sietsma, J., & Dow, R. J. F. (1991). Creating artificial neural networks that generalize. Neural Networks, 4 (1), 67–79.CrossRef
Zurück zum Zitat Stewart, J. D. (2008). Foot drop: where, why and what to do? Practical Neurology, 8(3), 158–169.CrossRefPubMed Stewart, J. D. (2008). Foot drop: where, why and what to do? Practical Neurology, 8(3), 158–169.CrossRefPubMed
Zurück zum Zitat Suraweera, N. P., & Ranasinghe, D. N. (2008). A natural algorithmic approach to the structural optimisation of neural networks. In Proceedings of the 2008 4th international conference on information and automation for sustainability (pp. 150–156). ICIAFS 2008. Suraweera, N. P., & Ranasinghe, D. N. (2008). A natural algorithmic approach to the structural optimisation of neural networks. In Proceedings of the 2008 4th international conference on information and automation for sustainability (pp. 150–156). ICIAFS 2008.
Zurück zum Zitat Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3), 328–339.CrossRef Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., & Lang, K. J. (1989). Phoneme recognition using time-delay neural networks. IEEE Transactions on Acoustics, Speech and Signal Processing, 37(3), 328–339.CrossRef
Zurück zum Zitat Webb, B, Harrison, R. R., & Willis, M. A. (2004). Sensorimotor control of navigation in arthropod and arti cial systems. Webb, B, Harrison, R. R., & Willis, M. A. (2004). Sensorimotor control of navigation in arthropod and arti cial systems.
Zurück zum Zitat Yao, X. (1999). Evolving artificial neural networks. In Proceedings of the IEEE (Vol. 87, pp. 1423–1447). Yao, X. (1999). Evolving artificial neural networks. In Proceedings of the IEEE (Vol. 87, pp. 1423–1447).
Metadaten
Titel
Predictive control of intersegmental tarsal movements in an insect
verfasst von
Alicia Costalago-Meruelo
David M. Simpson
Sandor M. Veres
Philip L. Newland
Publikationsdatum
22.04.2017
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2017
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-017-0644-x

Weitere Artikel der Ausgabe 1/2017

Journal of Computational Neuroscience 1/2017 Zur Ausgabe

Premium Partner