Skip to main content
Erschienen in: Production Engineering 4/2013

01.07.2013 | Production Process

Predictive modeling of machining residual stresses considering tool edge effects

verfasst von: Jiann-Cherng Su, Keith A. Young, Shesh Srivatsa, John B. Morehouse, Steven Y. Liang

Erschienen in: Production Engineering | Ausgabe 4/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The surface integrity of machined components is defined by several characteristics, of which residual stress is extremely important. Residual stress is known to have an effect on critical mechanical properties such as fatigue life, corrosion cracking resistance, and dimensional tolerance of machined components. Among the factors that affect residual stress in machined parts are cutting parameters and tool geometry. This paper presents a method of modeling residual stress for hone-edge cutting tools in turning. The model utilizes analytical cutting force models in conjunction with an approximate algorithm for elastic–plastic rolling/sliding contact. Oxley’s cutting force model is coupled with a slip line model proposed by Waldorf to estimate the cutting forces, which are in turn used to estimate the stress distribution between the tool and the workpiece. A rolling/sliding contact model, which captures kinematic hardening, is used to predict the machining residual stresses. Additionally, a moving heat source model is applied to determine the temperature rise in the workpiece due to the cutting forces. The model predictions are compared with experimental data for the turning of AISI 52100. Force predictions compare well with experimental results. Similarly, the predicted residual stress distributions correlate well with the measured residual stresses in terms of magnitude of stresses and depth of penetration.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Almen JO, Black PH (1963) Residual stresses and fatigue in metals. McGraw-Hill, New York, p 226 Almen JO, Black PH (1963) Residual stresses and fatigue in metals. McGraw-Hill, New York, p 226
2.
Zurück zum Zitat Liu CR, Barash MM (1982) Variables governing patterns of mechanical residual stress in a machined surface. J Eng Ind Trans ASME 104(3):257–264CrossRef Liu CR, Barash MM (1982) Variables governing patterns of mechanical residual stress in a machined surface. J Eng Ind Trans ASME 104(3):257–264CrossRef
3.
Zurück zum Zitat Henriksen EK (1951) Residual stresses in machined surfaces. Am Soc Mech Eng Trans 73(1):69–76 Henriksen EK (1951) Residual stresses in machined surfaces. Am Soc Mech Eng Trans 73(1):69–76
4.
Zurück zum Zitat Okushima K, Kakino Y (1971) Residual stress produced by metal cutting. 20(1):13–14 Okushima K, Kakino Y (1971) Residual stress produced by metal cutting. 20(1):13–14
5.
Zurück zum Zitat Tsuchida K, Kawada Y, Kodama S (1975) Study on the residual stress distributions by turning. 18(116):123–130 Tsuchida K, Kawada Y, Kodama S (1975) Study on the residual stress distributions by turning. 18(116):123–130
6.
Zurück zum Zitat Lin Z-C, Lin Y–Y, Liu CR (1991) Effect of thermal load and mechanical load on the residual stress of a machined workpiece. Int J Mech Sci 33(4):263–278CrossRef Lin Z-C, Lin Y–Y, Liu CR (1991) Effect of thermal load and mechanical load on the residual stress of a machined workpiece. Int J Mech Sci 33(4):263–278CrossRef
7.
Zurück zum Zitat Matsumoto Y, Barash MM, Liu CR (1986) Effect of hardness on the surface integrity of Aisi 4340 steel. J Eng Ind Trans ASME 108(3):169–175CrossRef Matsumoto Y, Barash MM, Liu CR (1986) Effect of hardness on the surface integrity of Aisi 4340 steel. J Eng Ind Trans ASME 108(3):169–175CrossRef
8.
Zurück zum Zitat Wu DW, Matsumoto Y (1990) Effect of hardness on residual stresses in orthogonal machining of Aisi 4340 steel. J Eng Ind Trans ASME 112(3):245–252CrossRef Wu DW, Matsumoto Y (1990) Effect of hardness on residual stresses in orthogonal machining of Aisi 4340 steel. J Eng Ind Trans ASME 112(3):245–252CrossRef
9.
Zurück zum Zitat Jacobus JK, DeVor RE, Kapoor SG (2000) Machining-induced residual stress: experimentation and modeling. J Manuf Sci Eng 122:20–31CrossRef Jacobus JK, DeVor RE, Kapoor SG (2000) Machining-induced residual stress: experimentation and modeling. J Manuf Sci Eng 122:20–31CrossRef
10.
Zurück zum Zitat Hua J et al (2005) Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mater Sci Eng A 394(1–2):238–248 Hua J et al (2005) Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer + hone cutting edge geometry. Mater Sci Eng A 394(1–2):238–248
11.
Zurück zum Zitat Liu M, Takagi J-I, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241CrossRef Liu M, Takagi J-I, Tsukuda A (2004) Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J Mater Process Technol 150(3):234–241CrossRef
12.
Zurück zum Zitat Albrecht P (1960) New developments in theory of metal-cutting process—1. Ploughing process in metal cutting. Am Soc Mech Eng Trans J Eng Ind Ser B 82(4):348–358 Albrecht P (1960) New developments in theory of metal-cutting process—1. Ploughing process in metal cutting. Am Soc Mech Eng Trans J Eng Ind Ser B 82(4):348–358
13.
Zurück zum Zitat Thiele JD, Melkote SN (1999) Effect of tool edge geometry on workpiece sub-surface deformation and through-thickness residual stresses for hard-turning of Aisi 52100 steel. In: Technical Paper—Society of Manufacturing Engineers. MR, 1999(MR99-167): pp. 1–6 Thiele JD, Melkote SN (1999) Effect of tool edge geometry on workpiece sub-surface deformation and through-thickness residual stresses for hard-turning of Aisi 52100 steel. In: Technical Paper—Society of Manufacturing Engineers. MR, 1999(MR99-167): pp. 1–6
14.
Zurück zum Zitat Dahlman P, Gunnberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147(2):181–184CrossRef Dahlman P, Gunnberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147(2):181–184CrossRef
15.
Zurück zum Zitat Ozel T (2003) Modeling of hard part machining: effect of insert edge preparation in Cbn cutting tools. J Mater Process Technol 141(2):284–293CrossRef Ozel T (2003) Modeling of hard part machining: effect of insert edge preparation in Cbn cutting tools. J Mater Process Technol 141(2):284–293CrossRef
16.
Zurück zum Zitat Liang SY, Su J-C (2007) Residual stress modeling in orthogonal machining. Ann Int Inst Prod Eng Res CIRP 56/1:65–68 Liang SY, Su J-C (2007) Residual stress modeling in orthogonal machining. Ann Int Inst Prod Eng Res CIRP 56/1:65–68
17.
Zurück zum Zitat Liang SY, Huang Y (2003) Cutting forces modeling considering the effect of tool thermal property—application to Cbn hard turning. Int J Mach Tools Manuf 43(3):307–315CrossRef Liang SY, Huang Y (2003) Cutting forces modeling considering the effect of tool thermal property—application to Cbn hard turning. Int J Mach Tools Manuf 43(3):307–315CrossRef
18.
Zurück zum Zitat Arsecularatne JA, Fowle RF, Mathew P (1996) Nose radius oblique tool: cutting force and built-up edge prediction. Int J Mach Tools Manuf 36(5):585–596CrossRef Arsecularatne JA, Fowle RF, Mathew P (1996) Nose radius oblique tool: cutting force and built-up edge prediction. Int J Mach Tools Manuf 36(5):585–596CrossRef
19.
Zurück zum Zitat Stabler GV (1951) Fundamental geometry of cutting tools. Inst Mech Eng Proc 165(63):14–21CrossRef Stabler GV (1951) Fundamental geometry of cutting tools. Inst Mech Eng Proc 165(63):14–21CrossRef
20.
Zurück zum Zitat Oxley PLB (1989) The Mechanics of Machining : An Analytical Approach to Assessing Machinability. E. Horwood, Halsted Press, New York, p 242 Oxley PLB (1989) The Mechanics of Machining : An Analytical Approach to Assessing Machinability. E. Horwood, Halsted Press, New York, p 242
21.
Zurück zum Zitat Waldorf DJ, DeVor RE, Kapoor SG (1998) Slip-line field for ploughing during orthogonal cutting. J Manuf Sci Eng Trans ASME 120(4):693–698CrossRef Waldorf DJ, DeVor RE, Kapoor SG (1998) Slip-line field for ploughing during orthogonal cutting. J Manuf Sci Eng Trans ASME 120(4):693–698CrossRef
22.
Zurück zum Zitat Basuray PK, Misra BK, Lal GK (1977) Transition from ploughing to cutting during machining with blunt tools. Wear 43:341–349CrossRef Basuray PK, Misra BK, Lal GK (1977) Transition from ploughing to cutting during machining with blunt tools. Wear 43:341–349CrossRef
23.
Zurück zum Zitat McDowell DL, Moyar GJ A more realistic model of nonlinear material response: application to elastic-plastic rolling contact. Proceedings of the 2nd International Symposium on Contact Mechancis and Wear of Rail/Wheel Systems, Kingston, RI, July 8–11 McDowell DL, Moyar GJ A more realistic model of nonlinear material response: application to elastic-plastic rolling contact. Proceedings of the 2nd International Symposium on Contact Mechancis and Wear of Rail/Wheel Systems, Kingston, RI, July 8–11
24.
Zurück zum Zitat McDowell DL (1997) Approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211(2):237–246CrossRef McDowell DL (1997) Approximate algorithm for elastic-plastic two-dimensional rolling/sliding contact. Wear 211(2):237–246CrossRef
25.
Zurück zum Zitat Jiang Y, Sehitoglu H (1994) Analytical approach to elastic-plastic stress analysis of rolling contact. J Tribol Trans ASME 116(3):577–587CrossRef Jiang Y, Sehitoglu H (1994) Analytical approach to elastic-plastic stress analysis of rolling contact. J Tribol Trans ASME 116(3):577–587CrossRef
26.
Zurück zum Zitat Yen Y-C, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146(1):72–81CrossRef Yen Y-C, Jain A, Altan T (2004) A finite element analysis of orthogonal machining using different tool edge geometries. J Mater Process Technol 146(1):72–81CrossRef
27.
Zurück zum Zitat Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef Johnson GR, Cook WH (1985) Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng Fract Mech 21(1):31–48CrossRef
28.
Zurück zum Zitat Merwin JE, Johnson KL (1963) An analysis of plastic deformation in rolling contact. Proc Inst Mech Eng Lond 177(25):676–685CrossRef Merwin JE, Johnson KL (1963) An analysis of plastic deformation in rolling contact. Proc Inst Mech Eng Lond 177(25):676–685CrossRef
29.
Zurück zum Zitat Jaeger JC (1942) Moving sources of heat and temperature at sliding contacts. Royal Soc N S W J Proc 76(3):203–224MathSciNet Jaeger JC (1942) Moving sources of heat and temperature at sliding contacts. Royal Soc N S W J Proc 76(3):203–224MathSciNet
30.
Zurück zum Zitat Komanduri R, Hou ZB (2000) Thermal modeling of the metal cutting process part I—temperature rise distribution due to shear plane heat source. Int J Mech Sci 42(9):1715–1752MATHCrossRef Komanduri R, Hou ZB (2000) Thermal modeling of the metal cutting process part I—temperature rise distribution due to shear plane heat source. Int J Mech Sci 42(9):1715–1752MATHCrossRef
31.
Zurück zum Zitat Komanduri R, Hou ZB (2001) Analysis of heat partition and temperature distribution in sliding systems. Wear 250–251(2):925–938CrossRef Komanduri R, Hou ZB (2001) Analysis of heat partition and temperature distribution in sliding systems. Wear 250–251(2):925–938CrossRef
32.
Zurück zum Zitat Huang Y (2002) Predictive modeling of tool wear rate with application to Cbn hard turning, Ph.D., Georgia Institute of Technology Huang Y (2002) Predictive modeling of tool wear rate with application to Cbn hard turning, Ph.D., Georgia Institute of Technology
33.
Zurück zum Zitat Huang Y, Liang SY (2003) Force modelling in shallow cuts with large negative rake angle and large nose radius tools—application to hard turning. Int J Adv Manuf Technol 22(9–10):626–632CrossRef Huang Y, Liang SY (2003) Force modelling in shallow cuts with large negative rake angle and large nose radius tools—application to hard turning. Int J Adv Manuf Technol 22(9–10):626–632CrossRef
34.
Zurück zum Zitat Sekhon GS, Chenot JL (1993) Numerical simulation of continuous chip formation during non-steady orthogonal cutting. Eng Comput 10(1):31–48CrossRef Sekhon GS, Chenot JL (1993) Numerical simulation of continuous chip formation during non-steady orthogonal cutting. Eng Comput 10(1):31–48CrossRef
35.
Zurück zum Zitat Thiele JD (1998) An investigation of surface generation mechanisms for finish hard turning of Aisi 52100 steel, Master of Science, Georgia Institute of Technology Thiele JD (1998) An investigation of surface generation mechanisms for finish hard turning of Aisi 52100 steel, Master of Science, Georgia Institute of Technology
Metadaten
Titel
Predictive modeling of machining residual stresses considering tool edge effects
verfasst von
Jiann-Cherng Su
Keith A. Young
Shesh Srivatsa
John B. Morehouse
Steven Y. Liang
Publikationsdatum
01.07.2013
Verlag
Springer-Verlag
Erschienen in
Production Engineering / Ausgabe 4/2013
Print ISSN: 0944-6524
Elektronische ISSN: 1863-7353
DOI
https://doi.org/10.1007/s11740-013-0470-6

Weitere Artikel der Ausgabe 4/2013

Production Engineering 4/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.