Skip to main content
Erschienen in: Journal of Polymer Research 9/2015

01.09.2015 | Original Paper

Preparation and characterization of mechanically and thermally enhanced polyimide/reactive halloysite nanotubes nanocomposites

verfasst von: Shiwei Chen, Xuchen Lu, Tizhuang Wang, Zhimin Zhang

Erschienen in: Journal of Polymer Research | Ausgabe 9/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High modulus and thermal stability of polyimide (PI)/reactive halloysite nanotubes (HNTs) nanocomposites were prepared by in situ polymerization. The pristine HNTs were firstly handled with the tetraethoxysilane (TEOS) and secondly grafted with the silane agent. The fourier transform infrared spectroscopy (FTIR) approved that TEOS was beneficial for the silane agent to modify the HNTs. Scanning electron microscopy (SEM) showed the differences of the morphology between the reactive HNTs and pristine HNTs. PI/reactive HNTs nanocomposites exhibited lower moisture absorption than pure polyimide. The reactive HNTs reduced the transmittance of the nanocomposites. Significant improvements in the thermal stability and glass transition temperature (Tg) of PI/reactive HNTs nanocomposites were achieved by addition of only a small amount of reactive HNTs. It was noteworthy that both the tensile strength and Young’ modulus of PI/reactive HNTs nanocomposites were significantly enhanced. A 62.8 % increase in tensile strength and a 63.7 % increase in Young’ modulus of the nanocomposites with 3 wt.% of the reactive HNTs were achieved. Finally, the preparation mechanism to obtain PI/reactive HNTs nanocomposites was proposed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos A Appl Sci Manuf 42(4):345–354CrossRef Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos A Appl Sci Manuf 42(4):345–354CrossRef
2.
Zurück zum Zitat Lin TF, Zhu LX, Chen T, Guo BC (2013) Optimization of mechanical performance of compatibilized polypropylene/poly(ethylene terephthalate) blends via selective dispersion of halloysite nanotubes in the blend. J Appl Polym Sci 129(1):47–56CrossRef Lin TF, Zhu LX, Chen T, Guo BC (2013) Optimization of mechanical performance of compatibilized polypropylene/poly(ethylene terephthalate) blends via selective dispersion of halloysite nanotubes in the blend. J Appl Polym Sci 129(1):47–56CrossRef
3.
Zurück zum Zitat Qiu K, Netravali AN (2013) Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polym Compos 34(5):799–809CrossRef Qiu K, Netravali AN (2013) Halloysite nanotube reinforced biodegradable nanocomposites using noncrosslinked and malonic acid crosslinked polyvinyl alcohol. Polym Compos 34(5):799–809CrossRef
4.
Zurück zum Zitat Fréchet JMJ (2005) Functional polymers: from plastic electronics to polymer-assisted therapeutics. Prog Polym Sci 30(8–9):844–857CrossRef Fréchet JMJ (2005) Functional polymers: from plastic electronics to polymer-assisted therapeutics. Prog Polym Sci 30(8–9):844–857CrossRef
5.
Zurück zum Zitat Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83CrossRef Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83CrossRef
6.
Zurück zum Zitat Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507CrossRef Landfester K (2009) Miniemulsion polymerization and the structure of polymer and hybrid nanoparticles. Angew Chem Int Ed 48(25):4488–4507CrossRef
7.
Zurück zum Zitat Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRef Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRef
8.
Zurück zum Zitat Zhao H, Shipp DA (2003) Preparation of poly (styrene-block-butyl acrylate) block copolymer- silicate nanocomposites. Chem Mater 15(14):2693–2695CrossRef Zhao H, Shipp DA (2003) Preparation of poly (styrene-block-butyl acrylate) block copolymer- silicate nanocomposites. Chem Mater 15(14):2693–2695CrossRef
9.
Zurück zum Zitat Janek M, Emmerich K, Heissler S, Nüesch R (2007) Thermally induced grafting reactions of ethylene glycol and glycerol intercalates of kaolinite. Chem Mater 19(4):684–693CrossRef Janek M, Emmerich K, Heissler S, Nüesch R (2007) Thermally induced grafting reactions of ethylene glycol and glycerol intercalates of kaolinite. Chem Mater 19(4):684–693CrossRef
10.
Zurück zum Zitat Letaïef S, Aranda P, Fernández-Saavedra R, Margeson JCJ, Detellier C, Ruiz-Hitzky E (2008) Poly (3, 4-ethylenedioxythiophene)–clay nanocomposites. J Mater Chem 18(19):2227–2233CrossRef Letaïef S, Aranda P, Fernández-Saavedra R, Margeson JCJ, Detellier C, Ruiz-Hitzky E (2008) Poly (3, 4-ethylenedioxythiophene)–clay nanocomposites. J Mater Chem 18(19):2227–2233CrossRef
11.
Zurück zum Zitat Kaushik AK, Podsiadlo P, Qin M, Shaw CM, Waas AM, Kotov NA, Arruda EM (2009) The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites. Macromolecules 42(17):6588–6595CrossRef Kaushik AK, Podsiadlo P, Qin M, Shaw CM, Waas AM, Kotov NA, Arruda EM (2009) The role of nanoparticle layer separation in the finite deformation response of layered polyurethane-clay nanocomposites. Macromolecules 42(17):6588–6595CrossRef
12.
Zurück zum Zitat Tunc S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48(3):414–424CrossRef Tunc S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48(3):414–424CrossRef
13.
Zurück zum Zitat Mirabedini S, Behzadnasab M, Kabiri K (2012) Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Compos A Appl Sci Manuf 43(11):2095–2106CrossRef Mirabedini S, Behzadnasab M, Kabiri K (2012) Effect of various combinations of zirconia and organoclay nanoparticles on mechanical and thermal properties of an epoxy nanocomposite coating. Compos A Appl Sci Manuf 43(11):2095–2106CrossRef
14.
Zurück zum Zitat Wheeler PA, Wang J, Mathias LJ (2006) Poly (methyl methacrylate)/laponite nanocomposites: exploring covalent and ionic clay modifications. Chem Mater 18(17):3937–3945CrossRef Wheeler PA, Wang J, Mathias LJ (2006) Poly (methyl methacrylate)/laponite nanocomposites: exploring covalent and ionic clay modifications. Chem Mater 18(17):3937–3945CrossRef
15.
Zurück zum Zitat Kuan HC, Chuang WP, Ma CCM, Chiang CL, Wu HL (2005) Synthesis and characterization of a clay/waterborne polyurethane nanocomposite. J Mater Sci 40(1):179–185CrossRef Kuan HC, Chuang WP, Ma CCM, Chiang CL, Wu HL (2005) Synthesis and characterization of a clay/waterborne polyurethane nanocomposite. J Mater Sci 40(1):179–185CrossRef
16.
Zurück zum Zitat Lan T, Kaviratna PD, Pinnavaia TJ (1994) On the nature of polyimide-clay hybrid composites. Chem Mater 6(5):573–575CrossRef Lan T, Kaviratna PD, Pinnavaia TJ (1994) On the nature of polyimide-clay hybrid composites. Chem Mater 6(5):573–575CrossRef
17.
Zurück zum Zitat Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11(7):1942–1947CrossRef Tyan HL, Liu YC, Wei KH (1999) Thermally and mechanically enhanced clay/polyimide nanocomposite via reactive organoclay. Chem Mater 11(7):1942–1947CrossRef
18.
Zurück zum Zitat Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4(5):2699–2708CrossRef Huang T, Lu R, Su C, Wang H, Guo Z, Liu P, Huang Z, Chen H, Li T (2012) Chemically modified graphene/polyimide composite films based on utilization of covalent bonding and oriented distribution. ACS Appl Mater Interfaces 4(5):2699–2708CrossRef
19.
Zurück zum Zitat Kumar M, Singh K, Dhawan SK, Tharanikkarasu K, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis and characterization of covalently-grafted graphene–polyaniline nanocomposites and its use in a supercapacitor. Chem Eng J 231:397–405CrossRef Kumar M, Singh K, Dhawan SK, Tharanikkarasu K, Chung JS, Kong BS, Kim EJ, Hur SH (2013) Synthesis and characterization of covalently-grafted graphene–polyaniline nanocomposites and its use in a supercapacitor. Chem Eng J 231:397–405CrossRef
20.
Zurück zum Zitat Yang Y, Zhu Z, Yin J, Wang X, Ze Q (1999) Preparation and properties of hybrids of organo- soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer 40(15):4407–4414CrossRef Yang Y, Zhu Z, Yin J, Wang X, Ze Q (1999) Preparation and properties of hybrids of organo- soluble polyimide and montmorillonite with various chemical surface modification methods. Polymer 40(15):4407–4414CrossRef
21.
Zurück zum Zitat Zhang YH, Dang ZM, Fu SY, Xin JH, Deng JG, Wu J, Yang S, Li LF, Yan Q (2005) Dielectric and dynamic mechanical properties of polyimide–clay nanocomposite films. Chem Phys Lett 401(4):553–557CrossRef Zhang YH, Dang ZM, Fu SY, Xin JH, Deng JG, Wu J, Yang S, Li LF, Yan Q (2005) Dielectric and dynamic mechanical properties of polyimide–clay nanocomposite films. Chem Phys Lett 401(4):553–557CrossRef
22.
Zurück zum Zitat Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3):548–554CrossRef Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3):548–554CrossRef
23.
Zurück zum Zitat Morgan AB, Putthanarat S (2011) Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym Degrad Stab 96(1):23–32CrossRef Morgan AB, Putthanarat S (2011) Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym Degrad Stab 96(1):23–32CrossRef
24.
Zurück zum Zitat Marini J, Bretas RES (2013) Influence of shape and surface modification of nanoparticle on the rheological and dynamic-mechanical properties of polyamide 6 nanocomposites. Polym Eng Sci 53(7):1512–1528CrossRef Marini J, Bretas RES (2013) Influence of shape and surface modification of nanoparticle on the rheological and dynamic-mechanical properties of polyamide 6 nanocomposites. Polym Eng Sci 53(7):1512–1528CrossRef
25.
Zurück zum Zitat Zhu J, Guo N, Zhang Y, Yu L, Liu J (2014) Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4- styrenesulfonate) via surface-initiated ATRP. J Membr Sci 465:91–99CrossRef Zhu J, Guo N, Zhang Y, Yu L, Liu J (2014) Preparation and characterization of negatively charged PES nanofiltration membrane by blending with halloysite nanotubes grafted with poly (sodium 4- styrenesulfonate) via surface-initiated ATRP. J Membr Sci 465:91–99CrossRef
26.
Zurück zum Zitat Wu W, Cao XW, Luo J, He GJ, Zhang YJ (2014) Morphology, thermal, and mechanical properties of poly(butylene succinate) reinforced with halloysite nanotube. Polym Compos 35(5):847–855CrossRef Wu W, Cao XW, Luo J, He GJ, Zhang YJ (2014) Morphology, thermal, and mechanical properties of poly(butylene succinate) reinforced with halloysite nanotube. Polym Compos 35(5):847–855CrossRef
27.
Zurück zum Zitat Marney DCO, Yang W, Russell LJ, Shen SZ, Nguyen T, Yuan Q, Varley R, Li S (2012) Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6. Polym Adv Technol 23(12):1564–1571CrossRef Marney DCO, Yang W, Russell LJ, Shen SZ, Nguyen T, Yuan Q, Varley R, Li S (2012) Phosphorus intercalation of halloysite nanotubes for enhanced fire properties of polyamide 6. Polym Adv Technol 23(12):1564–1571CrossRef
28.
Zurück zum Zitat Du M, Guo B, Liu M, Cai X, Jia D (2010) Reinforcing thermoplastics with hydrogen bonding bridged inorganics. Phys B Condens Matter 405(2):655–662CrossRef Du M, Guo B, Liu M, Cai X, Jia D (2010) Reinforcing thermoplastics with hydrogen bonding bridged inorganics. Phys B Condens Matter 405(2):655–662CrossRef
29.
Zurück zum Zitat Barrientos-Ramirez S, de Oca-Ramirez GM, Ramos-Fernandez EV, Sepulveda-Escribano A, Pastor-Blas MM, Gonzalez-Montiel A (2011) Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Appl Catal A Gen 406(1–2):22–33CrossRef Barrientos-Ramirez S, de Oca-Ramirez GM, Ramos-Fernandez EV, Sepulveda-Escribano A, Pastor-Blas MM, Gonzalez-Montiel A (2011) Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate. Appl Catal A Gen 406(1–2):22–33CrossRef
30.
Zurück zum Zitat Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751CrossRef Yuan P, Southon PD, Liu ZW, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with gamma-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751CrossRef
31.
Zurück zum Zitat Gu A, Kuo SW, Chang FC (2001) Syntheses and properties of PI/clay hybrids. J Appl Polym Sci 79(10):1902–1910CrossRef Gu A, Kuo SW, Chang FC (2001) Syntheses and properties of PI/clay hybrids. J Appl Polym Sci 79(10):1902–1910CrossRef
Metadaten
Titel
Preparation and characterization of mechanically and thermally enhanced polyimide/reactive halloysite nanotubes nanocomposites
verfasst von
Shiwei Chen
Xuchen Lu
Tizhuang Wang
Zhimin Zhang
Publikationsdatum
01.09.2015
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 9/2015
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-015-0806-3

Weitere Artikel der Ausgabe 9/2015

Journal of Polymer Research 9/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.