Skip to main content
Erschienen in: Journal of Materials Science 23/2014

01.12.2014 | Original Paper

Preparation and performance evaluation of castor oil-based polyurethane prepolymer/polylactide blends

verfasst von: T. Gurunathan, Smita Mohanty, Sanjay K. Nayak

Erschienen in: Journal of Materials Science | Ausgabe 23/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polylactide (PLA) is an important biodegradable polymer, used for numerous applications ranging from industrial packaging to tissue engineering. However, its inherent brittleness and limited thermal stability have restricted its penetration to niche markets. In this communication, the authors demonstrate that blending of PLA with castor oil-based polyurethane prepolymer (COPUP), with the addition of COPUP, dispersed in the PLA matrix can overcome the inherent brittleness of the matrix polymer. NCO-terminated COPUP was successfully synthesized and subsequently mixed with variable concentration of PLA matrix using melt blending technique. The interfacial compatibilization between COPUP and PLA phase happened by the reaction of −NCO groups with terminal hydroxyl groups of PLA was confirmed by FT-IR peak deconvolution technique. As indicated by the results of DMA and DSC, the glass transition temperature (T g) of both PLA and COPUP shifted closer together, indicating that the blend compatibility increased. The tensile properties and notched Izod impact strength of the PLA and toughened PLA are also investigated. With the addition of 30 % COPUP concentration, the elongation at break of the blend reached 377.46 %, and a notched Izod impact 269.62 J m−1. With improved toughness, the PLA/COPUP blends could be used as replacements for some traditional petroleum-based polymers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tschan MJL, Brule E, Haquette P, Thomas CM (2012) Synthesis of biodegradable polymers from renewable resources. Polym Chem 3:836–851CrossRef Tschan MJL, Brule E, Haquette P, Thomas CM (2012) Synthesis of biodegradable polymers from renewable resources. Polym Chem 3:836–851CrossRef
2.
Zurück zum Zitat Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRef Lim LT, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33:820–852CrossRef
3.
Zurück zum Zitat Rasal RM, Hirt DE (2009) Micropatterning of covalently attached biotin on poly(lactic acid) film surfaces. Macromol Biosci 9:989–996CrossRef Rasal RM, Hirt DE (2009) Micropatterning of covalently attached biotin on poly(lactic acid) film surfaces. Macromol Biosci 9:989–996CrossRef
4.
Zurück zum Zitat Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef Auras R, Harte B, Selke S (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864CrossRef
5.
Zurück zum Zitat Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B 49:1051–1083CrossRef Liu H, Zhang J (2011) Research progress in toughening modification of poly(lactic acid). J Polym Sci Part B 49:1051–1083CrossRef
6.
Zurück zum Zitat Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRef Rasal RM, Janorkar AV, Hirt DE (2010) Poly(lactic acid) modifications. Prog Polym Sci 35:338–356CrossRef
7.
Zurück zum Zitat Meng B, Tao J, Deng J, Wu Z, Yang M (2011) Toughening of polylactide with higher loading of nano-titania particles coated by poly(e-caprolactone). Mater Lett 65:729–732CrossRef Meng B, Tao J, Deng J, Wu Z, Yang M (2011) Toughening of polylactide with higher loading of nano-titania particles coated by poly(e-caprolactone). Mater Lett 65:729–732CrossRef
8.
Zurück zum Zitat Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRef Jiang L, Zhang J, Wolcott MP (2007) Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer 48:7632–7644CrossRef
9.
Zurück zum Zitat Gramlich WM, Robertson ML, Hillmyer MA (2010) Reactive compatibilization of poly(l-lactide) and conjugated soybean oil. Macromolecules 43:2313–2321CrossRef Gramlich WM, Robertson ML, Hillmyer MA (2010) Reactive compatibilization of poly(l-lactide) and conjugated soybean oil. Macromolecules 43:2313–2321CrossRef
10.
Zurück zum Zitat Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796CrossRef Ljungberg N, Wesslen B (2005) Preparation and properties of plasticized poly(lactic acid) films. Biomacromolecules 6:1789–1796CrossRef
11.
Zurück zum Zitat Lemmouchi Y, Murariu M, Santos AMD, Amass AJ, Schacht E, Dubois P (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(d,l-lactide)-b-poly-(ethylene glycol) copolymers. Eur Polym J 45:2839–2848CrossRef Lemmouchi Y, Murariu M, Santos AMD, Amass AJ, Schacht E, Dubois P (2009) Plasticization of poly(lactide) with blends of tributyl citrate and low molecular weight poly(d,l-lactide)-b-poly-(ethylene glycol) copolymers. Eur Polym J 45:2839–2848CrossRef
12.
Zurück zum Zitat Hong H, Wei J, Yuan Y, Chen FP, Wang J, Qu X, Liu CS (2011) A novel composite coupled hardness with flexibleness—polylactic acid toughen with thermoplastic polyurethane. J Appl Polym Sci 121:855–861CrossRef Hong H, Wei J, Yuan Y, Chen FP, Wang J, Qu X, Liu CS (2011) A novel composite coupled hardness with flexibleness—polylactic acid toughen with thermoplastic polyurethane. J Appl Polym Sci 121:855–861CrossRef
13.
Zurück zum Zitat Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRef Jacobsen S, Fritz HG (1999) Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polym Eng Sci 39:1303–1310CrossRef
14.
Zurück zum Zitat Sheth M, Kumar RA, Dave VA, Gross R, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505CrossRef Sheth M, Kumar RA, Dave VA, Gross R, McCarthy SP (1997) Biodegradable polymer blends of poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 66:1495–1505CrossRef
15.
Zurück zum Zitat Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer 37:5849–5857CrossRef Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(l-lactide) and poly(ethylene oxide) blends: thermal characterization and physical properties. Polymer 37:5849–5857CrossRef
16.
Zurück zum Zitat Aslan S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) Poly(d,l-lactic acid)/poly(∈-caprolactone) blend membranes: preparation and morphological characterisation. J Mater Sci 35:1615–1622CrossRef Aslan S, Calandrelli L, Laurienzo P, Malinconico M, Migliaresi C (2000) Poly(d,l-lactic acid)/poly(∈-caprolactone) blend membranes: preparation and morphological characterisation. J Mater Sci 35:1615–1622CrossRef
17.
Zurück zum Zitat Broz ME, VanderHart DL, Washburn NR (2003) Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials 24:4181–4190CrossRef Broz ME, VanderHart DL, Washburn NR (2003) Structure and mechanical properties of poly(d,l-lactic acid)/poly(ε-caprolactone) blends. Biomaterials 24:4181–4190CrossRef
19.
Zurück zum Zitat Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q (2012) Tailoring impact toughness of poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. Appl Mater Interfaces 4:897–905CrossRef Bai H, Xiu H, Gao J, Deng H, Zhang Q, Yang M, Fu Q (2012) Tailoring impact toughness of poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. Appl Mater Interfaces 4:897–905CrossRef
20.
Zurück zum Zitat Odent J, Leclère P, Raquez JM, Dubois P (2013) Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur Polym J 49:914–922CrossRef Odent J, Leclère P, Raquez JM, Dubois P (2013) Toughening of polylactide by tailoring phase-morphology with P[CL-co-LA] random copolyesters as biodegradable impact modifiers. Eur Polym J 49:914–922CrossRef
21.
Zurück zum Zitat Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Polymer alloys of nodax copolymers and poly (lactic acid). Macromol Biosci 4:269–275CrossRef Noda I, Satkowski MM, Dowrey AE, Marcott C (2004) Polymer alloys of nodax copolymers and poly (lactic acid). Macromol Biosci 4:269–275CrossRef
22.
Zurück zum Zitat Chen H, Pyda M, Cebe P (2009) Non-isothermal crystallization of PET/PLA blends. Thermochim Acta 492:61–66CrossRef Chen H, Pyda M, Cebe P (2009) Non-isothermal crystallization of PET/PLA blends. Thermochim Acta 492:61–66CrossRef
23.
Zurück zum Zitat Zhang NW, Wang QF, Ren J, Wang L (2009) Preparation and properties of biodegradable poly (lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256. doi:10.1007/s10853-008-3049-4 CrossRef Zhang NW, Wang QF, Ren J, Wang L (2009) Preparation and properties of biodegradable poly (lactic acid)/poly(butylene adipate-co-terephthalate) blend with glycidyl methacrylate as reactive processing agent. J Mater Sci 44:250–256. doi:10.​1007/​s10853-008-3049-4 CrossRef
24.
Zurück zum Zitat Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly(butyleneadipate-co-terephthalate) blends. Biomacromolecules 7:199–207CrossRef Jiang L, Wolcott MP, Zhang JW (2006) Study of biodegradable polylactide/poly(butyleneadipate-co-terephthalate) blends. Biomacromolecules 7:199–207CrossRef
25.
Zurück zum Zitat Formanek P, Pei X-Q, Friedrich K, Simeonova S, Evstatiev M (2013) MFC-structured biodegradable poly(l-lactide)/poly(butylene adipate-co-terephatalate) blends with improved mechanical and barrier properties. J Mater Sci 48:6312–6330. doi:10.1007/s10853-013-7431-5 CrossRef Formanek P, Pei X-Q, Friedrich K, Simeonova S, Evstatiev M (2013) MFC-structured biodegradable poly(l-lactide)/poly(butylene adipate-co-terephatalate) blends with improved mechanical and barrier properties. J Mater Sci 48:6312–6330. doi:10.​1007/​s10853-013-7431-5 CrossRef
26.
Zurück zum Zitat Fu Q, Wang K, Li Y, Su J (2014) Brittle–ductile transition behavior of poly(ethylene terephthalate)/poly(ethylene-octene) blend: the roles of compatibility and test temperature. J Mater Sci 49:1794–1804. doi:10.1007/s10853-013-7867-7 CrossRef Fu Q, Wang K, Li Y, Su J (2014) Brittle–ductile transition behavior of poly(ethylene terephthalate)/poly(ethylene-octene) blend: the roles of compatibility and test temperature. J Mater Sci 49:1794–1804. doi:10.​1007/​s10853-013-7867-7 CrossRef
27.
Zurück zum Zitat Gramlich WM, Robertson ML, Hillmyer MA (2010) Reactive compatibilization of poly(l-lactide) and conjugated soybean oil. Macromolecules 43:2313–2321CrossRef Gramlich WM, Robertson ML, Hillmyer MA (2010) Reactive compatibilization of poly(l-lactide) and conjugated soybean oil. Macromolecules 43:2313–2321CrossRef
28.
Zurück zum Zitat Robertson ML, Chang K, Gramlich WM, Hillmyer MA (2010) Toughening of polylactide with polymerized soybean oil. Macromolecules 43:1807–1814CrossRef Robertson ML, Chang K, Gramlich WM, Hillmyer MA (2010) Toughening of polylactide with polymerized soybean oil. Macromolecules 43:1807–1814CrossRef
29.
Zurück zum Zitat Yokohara T, Yamaguchi M, Yamaguchi M (2008) Structure and properties for biomass-based poly-ester blends of PLA and PBS. Eur Polym J 44:677–685CrossRef Yokohara T, Yamaguchi M, Yamaguchi M (2008) Structure and properties for biomass-based poly-ester blends of PLA and PBS. Eur Polym J 44:677–685CrossRef
30.
Zurück zum Zitat Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33CrossRef Wang R, Wang S, Zhang Y, Wan C, Ma P (2009) Toughening modification of PLLA/PBS blends via in situ compatibilization. Polym Eng Sci 49:26–33CrossRef
31.
Zurück zum Zitat Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820CrossRef Harada M, Ohya T, Iida K, Hayashi H, Hirano K, Fukuda H (2007) Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. J Appl Polym Sci 106:1813–1820CrossRef
32.
Zurück zum Zitat Nyambo C, Misra M, Mohanty AK (2012) Toughening of brittle poly (lactide) with hyperbranched poly (ester-amide) and isocyanate-terminated prepolymer of polybutadiene. J Mater Sci 47:5158–5168. doi:10.1007/s10853-012-6393-3 CrossRef Nyambo C, Misra M, Mohanty AK (2012) Toughening of brittle poly (lactide) with hyperbranched poly (ester-amide) and isocyanate-terminated prepolymer of polybutadiene. J Mater Sci 47:5158–5168. doi:10.​1007/​s10853-012-6393-3 CrossRef
33.
Zurück zum Zitat Byrne N, Hameed N, Werzer O, Guo Q (2011) The preparation of novel nanofilled polymer composites using poly(l-lactic acid) and protein fibers. Eur Polym J 47:1279–1283CrossRef Byrne N, Hameed N, Werzer O, Guo Q (2011) The preparation of novel nanofilled polymer composites using poly(l-lactic acid) and protein fibers. Eur Polym J 47:1279–1283CrossRef
34.
Zurück zum Zitat Vannaladsaysy V, Todo M, Takayama T, Jaafar M, Ahmad Z, Pasomsouk K (2009) Effects of lysine triisocyanate on the mode I fracture behavior of polymer blend of poly (l-lactic acid) and poly (butylene succinate-co-l-lactate). J Mater Sci 44:3006–3009. doi:10.1007/s10853-009-3428-5 CrossRef Vannaladsaysy V, Todo M, Takayama T, Jaafar M, Ahmad Z, Pasomsouk K (2009) Effects of lysine triisocyanate on the mode I fracture behavior of polymer blend of poly (l-lactic acid) and poly (butylene succinate-co-l-lactate). J Mater Sci 44:3006–3009. doi:10.​1007/​s10853-009-3428-5 CrossRef
35.
Zurück zum Zitat Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48:146–154CrossRef Ma P, Hristova-Bogaerds DG, Goossens JGP, Spoelstra AB, Zhang Y, Lemstra PJ (2012) Toughening of poly(lactic acid) by ethylene-co-vinyl acetate copolymer with different vinyl acetate contents. Eur Polym J 48:146–154CrossRef
37.
Zurück zum Zitat Li Y, Shimizu H (2009) Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): morphology and properties. Eur Polym J 45:738–746CrossRef Li Y, Shimizu H (2009) Improvement in toughness of poly(l-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): morphology and properties. Eur Polym J 45:738–746CrossRef
38.
Zurück zum Zitat Swamy BKK, Siddaramaiah SomashekarR (2003) Structure-property relationship of castor oil based diol chain extended polyurethanes (PUs). J Mater Sci 38:451–460CrossRef Swamy BKK, Siddaramaiah SomashekarR (2003) Structure-property relationship of castor oil based diol chain extended polyurethanes (PUs). J Mater Sci 38:451–460CrossRef
39.
Zurück zum Zitat Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091CrossRef Ogunniyi DS (2006) Castor oil: a vital industrial raw material. Bioresour Technol 97:1086–1091CrossRef
40.
Zurück zum Zitat Simmons A, Hyvarinen J, Poole-Warren L (2006) The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer. Biomaterials 27:4484–4497CrossRef Simmons A, Hyvarinen J, Poole-Warren L (2006) The effect of sterilisation on a poly(dimethylsiloxane)/poly(hexamethylene oxide) mixed macrodiol-based polyurethane elastomer. Biomaterials 27:4484–4497CrossRef
42.
Zurück zum Zitat Kong X, Narine SS (2007) Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules 8:2203–2209CrossRef Kong X, Narine SS (2007) Physical properties of polyurethane plastic sheets produced from polyols from canola oil. Biomacromolecules 8:2203–2209CrossRef
43.
Zurück zum Zitat Oprea S (2010) Synthesis and properties of polyurethane elastomers with castor oil as crosslinker. J Am Oil Chem Soc 87:313–320CrossRef Oprea S (2010) Synthesis and properties of polyurethane elastomers with castor oil as crosslinker. J Am Oil Chem Soc 87:313–320CrossRef
44.
Zurück zum Zitat Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(l-lactide) and poly (ethylene oxide) blends: thermal characterization and physical properties. Polymer 37:5849–5857CrossRef Nijenhuis AJ, Colstee E, Grijpma DW, Pennings AJ (1996) High molecular weight poly(l-lactide) and poly (ethylene oxide) blends: thermal characterization and physical properties. Polymer 37:5849–5857CrossRef
45.
Zurück zum Zitat Hojabri L, Kong X, Narine SS (2009) Fatty acid-derived diisocyanate and biobased polyurethane Produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10:884–891CrossRef Hojabri L, Kong X, Narine SS (2009) Fatty acid-derived diisocyanate and biobased polyurethane Produced from vegetable oil: synthesis, polymerization, and characterization. Biomacromolecules 10:884–891CrossRef
46.
Zurück zum Zitat Wang Z, Yu L, Ding M, Tan H, Li J, Fu Q (2011) Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and l-lysine diisocyanate. Polym Chem 2:601–607CrossRef Wang Z, Yu L, Ding M, Tan H, Li J, Fu Q (2011) Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) and l-lysine diisocyanate. Polym Chem 2:601–607CrossRef
47.
Zurück zum Zitat Coleman MM, Lee KH, Skrovanek DJ, Painter PC (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149–2157CrossRef Coleman MM, Lee KH, Skrovanek DJ, Painter PC (1986) Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 19:2149–2157CrossRef
48.
Zurück zum Zitat Romanova V, Begishev V, Karmanov V, Kondyurin A, Maitz MF (2002) Fourier transform Raman and fourier transform infrared spectra of cross-linked polyurethaneurea films synthesized from solutions. J Raman Spectr 33:769–777CrossRef Romanova V, Begishev V, Karmanov V, Kondyurin A, Maitz MF (2002) Fourier transform Raman and fourier transform infrared spectra of cross-linked polyurethaneurea films synthesized from solutions. J Raman Spectr 33:769–777CrossRef
49.
Zurück zum Zitat Cunliffe AV, Davis A, Farey M, Wright J (1985) The kinetics of the reaction of isophorone di-isocyanate with mono-alcohols. Polymer 26:301–306CrossRef Cunliffe AV, Davis A, Farey M, Wright J (1985) The kinetics of the reaction of isophorone di-isocyanate with mono-alcohols. Polymer 26:301–306CrossRef
50.
Zurück zum Zitat Lucio B, Fuente JLDL (2014) Rheokinetic analysis on the formation of metallo-polyurethanes based on hydroxyl-terminated polybutadiene. Eur Polym J 50:117–126CrossRef Lucio B, Fuente JLDL (2014) Rheokinetic analysis on the formation of metallo-polyurethanes based on hydroxyl-terminated polybutadiene. Eur Polym J 50:117–126CrossRef
51.
Zurück zum Zitat Lomolder R, Plogmann F, Speier P (1997) Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. J Coating Technol 69:51–57CrossRef Lomolder R, Plogmann F, Speier P (1997) Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. J Coating Technol 69:51–57CrossRef
52.
Zurück zum Zitat Lu JM, Qiu ZB, Yang YT (2007) Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 48:4196–4204CrossRef Lu JM, Qiu ZB, Yang YT (2007) Fully biodegradable blends of poly(l-lactide) and poly(ethylene succinate): miscibility, crystallization, and mechanical properties. Polymer 48:4196–4204CrossRef
53.
Zurück zum Zitat Marubayashi H, Asai S, Sumita M (2012) Complex crystal formation of poly (l-lactide) with solvent molecules. Macromolecules 45:1384–1397CrossRef Marubayashi H, Asai S, Sumita M (2012) Complex crystal formation of poly (l-lactide) with solvent molecules. Macromolecules 45:1384–1397CrossRef
54.
Zurück zum Zitat Zhang J, Hu CP (2008) Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. Eur Polym J 44:3708–3714CrossRef Zhang J, Hu CP (2008) Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. Eur Polym J 44:3708–3714CrossRef
55.
Zurück zum Zitat Marvel CS (2009) Thermally stable polymers. Pure Appl Chem 16:351–368 Marvel CS (2009) Thermally stable polymers. Pure Appl Chem 16:351–368
56.
Zurück zum Zitat Herreraa M, Matuscheka G, Kettrupa A (2002) Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stabil 78:323–331CrossRef Herreraa M, Matuscheka G, Kettrupa A (2002) Thermal degradation of thermoplastic polyurethane elastomers (TPU) based on MDI. Polym Degrad Stabil 78:323–331CrossRef
57.
Zurück zum Zitat Tseng FP, Lin JJ, Tseng CR, Chang FC (2001) Poly(oxypropylene)-amide grafted polypropylene as novel compatibilizer for PP and PA6 blends. Polymer 42:713–725CrossRef Tseng FP, Lin JJ, Tseng CR, Chang FC (2001) Poly(oxypropylene)-amide grafted polypropylene as novel compatibilizer for PP and PA6 blends. Polymer 42:713–725CrossRef
58.
Zurück zum Zitat Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2462–2474CrossRef Pearson RA, Yee AF (1986) Toughening mechanisms in elastomer-modified epoxies. J Mater Sci 21:2462–2474CrossRef
Metadaten
Titel
Preparation and performance evaluation of castor oil-based polyurethane prepolymer/polylactide blends
verfasst von
T. Gurunathan
Smita Mohanty
Sanjay K. Nayak
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8509-4

Weitere Artikel der Ausgabe 23/2014

Journal of Materials Science 23/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.