Skip to main content
Erschienen in: Colloid and Polymer Science 12/2013

01.12.2013 | Original Contribution

Preparation and properties of 3-aminopropyltriethoxysilane functionalized graphene/polyurethane nanocomposite coatings

verfasst von: Wenshi Ma, Li Wu, Dongqiao Zhang, Shuangfeng Wang

Erschienen in: Colloid and Polymer Science | Ausgabe 12/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Silicone-modified graphene was successfully synthesized by treating graphene oxide with 3-aminopropyltriethoxysilane (AMEO) and then reduced by hydrazine hydrate. Subsequently, the AMEO-functionalized graphene was incorporated into polyurethane (PU) matrix to prepare AMEO-functionalized graphene/PU nanocomposite coatings. The functionalized graphene could disperse homogenously by means of a covalent connection with PU. AMEO-functionalized graphene (AFG)-reinforced PU nanocomposite coatings showed more excellent mechanical and thermal properties than those of pure PU. A 227 % increase in tensile strength and a 71.7 % improvement of elongation at break were obtained by addition 0.2 wt% of AFG. Meanwhile, thermogravimetric analysis reveals that thermal degradation temperature was enhanced almost 50 °C higher than that of neat PU, and differential scanning calorimetry analysis demonstrates that glass transition temperature decreased by around 9 °C. The thermal conductivity of AFG/PU nanocomposite coatings also increased by 40 % at low AFG loadings of 0.2 wt%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-base polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-base polymer nanocomposites. Polymer 52:5–25CrossRef
2.
Zurück zum Zitat Naffakh M, Diez-Pascual AM, Gomez-Fatou MA (2011) New hybrid nanocomposites containing carbon nanotubes, inorganic fullerene-like WS2 nanoparticles and poly(ether ether ketone) (PEEK). J Mater Chem 21:7425–7433CrossRef Naffakh M, Diez-Pascual AM, Gomez-Fatou MA (2011) New hybrid nanocomposites containing carbon nanotubes, inorganic fullerene-like WS2 nanoparticles and poly(ether ether ketone) (PEEK). J Mater Chem 21:7425–7433CrossRef
3.
Zurück zum Zitat Arai S, Sato T, Endo M (2011) Fabrication of various electroless Ni–P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin. Surf Coat Tech 205:3175–3181CrossRef Arai S, Sato T, Endo M (2011) Fabrication of various electroless Ni–P alloy/multiwalled carbon nanotube composite films on an acrylonitrile butadiene styrene resin. Surf Coat Tech 205:3175–3181CrossRef
4.
Zurück zum Zitat Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanoscables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. Polym Chem 48:1477–1484CrossRef Reddy KR, Jeong HM, Lee Y, Raghu AV (2010) Synthesis of MWCNTs-core/thiophene polymer-sheath composite nanoscables by a cationic surfactant-assisted chemical oxidative polymerization and their structural properties. Polym Chem 48:1477–1484CrossRef
5.
Zurück zum Zitat Keshri AK, Patel R, Agarwal A (2010) Comprehensive process maps to synthesize high density plasma sprayed aluminum oxide composite coatings with varying carbon nanotube content. Surf Coat Tech 205:690–702CrossRef Keshri AK, Patel R, Agarwal A (2010) Comprehensive process maps to synthesize high density plasma sprayed aluminum oxide composite coatings with varying carbon nanotube content. Surf Coat Tech 205:690–702CrossRef
6.
Zurück zum Zitat Abyzov AM, Kidalov SV, Shakhov FM (2012) High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl Therm Eng 48:72–80CrossRef Abyzov AM, Kidalov SV, Shakhov FM (2012) High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl Therm Eng 48:72–80CrossRef
7.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
8.
Zurück zum Zitat Chae HK, Siberio-Perez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRef Chae HK, Siberio-Perez DY, Kim J et al (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRef
9.
Zurück zum Zitat Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
10.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
11.
Zurück zum Zitat Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef Bolotin KI, Sikes KJ, Jiang Z et al (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRef
12.
Zurück zum Zitat Tang ZH, Lei YD, Guo BC et al (2012) The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer 53:673–680CrossRef Tang ZH, Lei YD, Guo BC et al (2012) The use of rhodamine B-decorated graphene as a reinforcement in polyvinyl alcohol composites. Polymer 53:673–680CrossRef
13.
Zurück zum Zitat Yoon IS (2011) Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction. J Mater Sci 46:1316–1321CrossRef Yoon IS (2011) Role of poly(N-vinyl-2-pyrrolidone) as stabilizer for dispersion of graphene via hydrophobic interaction. J Mater Sci 46:1316–1321CrossRef
14.
Zurück zum Zitat Jaemyung K, Laura JC et al (2012) Two-dimensional soft material: new faces of graphene oxide. Acc Chem Res 45:1356–1364CrossRef Jaemyung K, Laura JC et al (2012) Two-dimensional soft material: new faces of graphene oxide. Acc Chem Res 45:1356–1364CrossRef
15.
Zurück zum Zitat Stankovich S, Piner RD, Nguyen ST et al (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347CrossRef Stankovich S, Piner RD, Nguyen ST et al (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347CrossRef
16.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef Ramanathan T, Abdala AA, Stankovich S et al (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef
17.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRef
18.
Zurück zum Zitat Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterbrone polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254CrossRef Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterbrone polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254CrossRef
19.
Zurück zum Zitat Leivo EM, Keltberg TH, Kotari MJ (2001) Structure and thermal conductivity of flame sprayed polyamide 11 coatings filled with AIN, Al2O3 and BN ceramics. ASM Int Mater Park 204:327–330 Leivo EM, Keltberg TH, Kotari MJ (2001) Structure and thermal conductivity of flame sprayed polyamide 11 coatings filled with AIN, Al2O3 and BN ceramics. ASM Int Mater Park 204:327–330
20.
Zurück zum Zitat Lu X, XU G, Hofstra PG (1998) Moisture absorption, dielectric relaxation, and thermal conductivity studies of polymer composites. J Polym Sci 36:2259–2265CrossRef Lu X, XU G, Hofstra PG (1998) Moisture absorption, dielectric relaxation, and thermal conductivity studies of polymer composites. J Polym Sci 36:2259–2265CrossRef
21.
Zurück zum Zitat Choy CL (1977) Thermal conductivity of polymer. Polymer 18:984–1004CrossRef Choy CL (1977) Thermal conductivity of polymer. Polymer 18:984–1004CrossRef
22.
Zurück zum Zitat Zhou WY, Qi SH et al (2007) High temperature and insulating heat conductive coating. Acta Materiae Compositae Sinica 24:28–32 Zhou WY, Qi SH et al (2007) High temperature and insulating heat conductive coating. Acta Materiae Compositae Sinica 24:28–32
23.
Zurück zum Zitat Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRef
24.
Zurück zum Zitat Yuen SM, Ma CCM, Chiang CL (2008) Silane-grafted MWCNT/polyimide composites preparation, morphological and electrical properties. Compos Sci Technol 68:2842–2848CrossRef Yuen SM, Ma CCM, Chiang CL (2008) Silane-grafted MWCNT/polyimide composites preparation, morphological and electrical properties. Compos Sci Technol 68:2842–2848CrossRef
25.
Zurück zum Zitat Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef Yang H, Li F, Shan C, Han D, Zhang Q, Niu L, Ivaska A (2009) Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J Mater Chem 19:4632–4638CrossRef
26.
Zurück zum Zitat Hemraj-Benny T, Wong SS (2006) Silylation of single-walled carbon nanotubes. Chem Mater 18:4827–4839CrossRef Hemraj-Benny T, Wong SS (2006) Silylation of single-walled carbon nanotubes. Chem Mater 18:4827–4839CrossRef
27.
Zurück zum Zitat Hou SF, Su SJ, Kasner ML, Shah P, Patel K, Madarang CJ (2010) Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett 501:68–74CrossRef Hou SF, Su SJ, Kasner ML, Shah P, Patel K, Madarang CJ (2010) Formation of highly stable dispersions of silane-functionalized reduced graphene oxide. Chem Phys Lett 501:68–74CrossRef
28.
Zurück zum Zitat Pinto PR, Menders LC, Dias ML, Azuma C (2006) Synthesis of acrylic-modified sol–gel silica. Colloid Polym Sci 284:529–535CrossRef Pinto PR, Menders LC, Dias ML, Azuma C (2006) Synthesis of acrylic-modified sol–gel silica. Colloid Polym Sci 284:529–535CrossRef
29.
Zurück zum Zitat Prassas M, Phalippou JL, Mench L, Zarzycki J (1982) Preparation of xNa2O-(1 − x)SiO2 gels for the gel-glass process: I. Atmospheric effect on the structural evolution of the gels. J Non-Cryst Solids 48:79–95CrossRef Prassas M, Phalippou JL, Mench L, Zarzycki J (1982) Preparation of xNa2O-(1 − x)SiO2 gels for the gel-glass process: I. Atmospheric effect on the structural evolution of the gels. J Non-Cryst Solids 48:79–95CrossRef
30.
Zurück zum Zitat Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammers A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammers A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRef
31.
Zurück zum Zitat McLauchlin AR, Thomas NL (2009) Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant. Polym Degrad Stab 94:868–872CrossRef McLauchlin AR, Thomas NL (2009) Preparation and thermal characterisation of poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric surfactant. Polym Degrad Stab 94:868–872CrossRef
32.
Zurück zum Zitat Zhong H, Lukes JR (2006) Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B: Condens Matter 74:1–10CrossRef Zhong H, Lukes JR (2006) Interfacial thermal resistance between carbon nanotubes: molecular dynamics simulations and analytical thermal modeling. Phys Rev B: Condens Matter 74:1–10CrossRef
33.
Zurück zum Zitat Huxtable S, Cahill D, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734CrossRef Huxtable S, Cahill D, Shenogin S, Xue L, Ozisik R, Barone P, Usrey M, Strano M, Siddons G, Shim M, Keblinski P (2003) Interfacial heat flow in carbon nanotube suspensions. Nat Mater 2:731–734CrossRef
34.
Zurück zum Zitat Shenogin S, Liping X, Ozisik R, Keblinski P (2004) Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys 95:8136–8144CrossRef Shenogin S, Liping X, Ozisik R, Keblinski P (2004) Role of thermal boundary resistance on the heat flow in carbon-nanotube composites. J Appl Phys 95:8136–8144CrossRef
Metadaten
Titel
Preparation and properties of 3-aminopropyltriethoxysilane functionalized graphene/polyurethane nanocomposite coatings
verfasst von
Wenshi Ma
Li Wu
Dongqiao Zhang
Shuangfeng Wang
Publikationsdatum
01.12.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 12/2013
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-013-3014-x

Weitere Artikel der Ausgabe 12/2013

Colloid and Polymer Science 12/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.