Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 20/2019

28.09.2019

Preparation and properties of humidity sensor based on K-doped ZnO nanostructure

verfasst von: Yang Gu, Zi Ye, Ning Sun, Xuliang Kuang, Weijing Liu, Xiaojun Song, Lei Zhang, Wei Bai, Xiaodong Tang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 20/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

KxZn1−xO (X = 0%, 3%, 5%, 10%) nanowires have been synthesized through hydrothermal method and characterized by X-ray diffraction, scanning electron microscopy and X-ray photoelectron spectroscopy. Dielectrophoresis nano-manipulation technique was employed to arrange the materials on pre-designed Ti/Au electrodes to fabricate the humidity sensors, and the humidity sensing properties of sensors were investigated. The experimental results show that K-doped ZnO humidity sensors exhibit more excellent humidity sensing than the undoped ZnO humidity sensor. Especially, 5% K-doped ZnO humidity sensor show the highest sensitivity, the response time reduced from 32 to 12 s, and have lower hysteresis and better reproducibility. The improvement of humidity sensing performance is explained by the increase of oxygen vacancy defects due to the K doping process. In addition, the sensing mechanism was analyzed by complex impedance spectroscopy and multilayer adsorption theory. These results demonstrate the potential application of K-doped ZnO nanowires for fabricating high performance humidity sensors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A.S. Ismail, M.H. Mamat, I.B. Shameem Banu, M.F. Malek, M.M. Yusoff, R. Mohamed, W.R.W. Ahmad, M.A.R. Abdullah, NDMd Sin, A.B. Suriani, M.K. Ahmad, M. Rusop, Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties. J. Mater. Sci. 29, 12076–12088 (2018) A.S. Ismail, M.H. Mamat, I.B. Shameem Banu, M.F. Malek, M.M. Yusoff, R. Mohamed, W.R.W. Ahmad, M.A.R. Abdullah, NDMd Sin, A.B. Suriani, M.K. Ahmad, M. Rusop, Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties. J. Mater. Sci. 29, 12076–12088 (2018)
2.
Zurück zum Zitat S. Ashokan, P. Jayamurugan, V. Ponnuswamy, Effects of CuO and Oxidant on the morphology and conducting properties of PANI:CuO hybrid nanocomposites for humidity sensor application. Polym. Sci. B 61, 86–97 (2019) S. Ashokan, P. Jayamurugan, V. Ponnuswamy, Effects of CuO and Oxidant on the morphology and conducting properties of PANI:CuO hybrid nanocomposites for humidity sensor application. Polym. Sci. B 61, 86–97 (2019)
3.
Zurück zum Zitat S.P. Gupta, A.S. Pawbake, B.R. Sathe, D.J. Late, P.S. Walke, Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B 293, 83–92 (2019)CrossRef S.P. Gupta, A.S. Pawbake, B.R. Sathe, D.J. Late, P.S. Walke, Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B 293, 83–92 (2019)CrossRef
4.
Zurück zum Zitat H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO3–SnO2 composite hollow nanospheres. J. Mater. Chem. A 2, 6854–6862 (2014)CrossRef H. Li, B. Liu, D. Cai, Y. Wang, Y. Liu, L. Mei, L. Wang, D. Wang, Q. Li, T. Wang, High-temperature humidity sensors based on WO3–SnO2 composite hollow nanospheres. J. Mater. Chem. A 2, 6854–6862 (2014)CrossRef
5.
Zurück zum Zitat V.K. Tomer, S. Duhan, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens. Actuators B 223, 750–760 (2016)CrossRef V.K. Tomer, S. Duhan, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens. Actuators B 223, 750–760 (2016)CrossRef
6.
Zurück zum Zitat X.-J. Yue, T.-S. Hong, X. Xu, Z. Li, High-performance humidity sensors based on double-layer ZnO-TiO2 nanofibers via electrospinning. Chin. Phys. Lett. 28, 090701 (2011)CrossRef X.-J. Yue, T.-S. Hong, X. Xu, Z. Li, High-performance humidity sensors based on double-layer ZnO-TiO2 nanofibers via electrospinning. Chin. Phys. Lett. 28, 090701 (2011)CrossRef
7.
Zurück zum Zitat Q. Qi, Y.-C. Zou, M.-H. Fan, Y.-P. Liu, S. Gao, P.-P. Wang, Y. He, D.-J. Wang, G.-D. Li, Trimethylamine sensors with enhanced anti-humidity ability fabricated from La0.7Sr0.3FeO3 coated In2O3–SnO2 composite nanofibers. Sens. Actuators B 203, 111–117 (2014)CrossRef Q. Qi, Y.-C. Zou, M.-H. Fan, Y.-P. Liu, S. Gao, P.-P. Wang, Y. He, D.-J. Wang, G.-D. Li, Trimethylamine sensors with enhanced anti-humidity ability fabricated from La0.7Sr0.3FeO3 coated In2O3–SnO2 composite nanofibers. Sens. Actuators B 203, 111–117 (2014)CrossRef
8.
Zurück zum Zitat K. Jayanthi, S. Chawla, K.N. Sood, M. Chhibara, S. Singh, Dopant induced morphology changes in ZnO nanocrystals. Appl. Surf. Sci. 255, 5869–5875 (2009)CrossRef K. Jayanthi, S. Chawla, K.N. Sood, M. Chhibara, S. Singh, Dopant induced morphology changes in ZnO nanocrystals. Appl. Surf. Sci. 255, 5869–5875 (2009)CrossRef
9.
Zurück zum Zitat C. Lin, H. Zhang, J. Zhang, C. Chen, Enhancement of the humidity sensing performance in Mg-Doped hexagonal ZnO microspheres at room temperature. Sensors 19, 519 (2019)CrossRef C. Lin, H. Zhang, J. Zhang, C. Chen, Enhancement of the humidity sensing performance in Mg-Doped hexagonal ZnO microspheres at room temperature. Sensors 19, 519 (2019)CrossRef
10.
Zurück zum Zitat Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. 16, R829–R858 (2004) Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. 16, R829–R858 (2004)
11.
Zurück zum Zitat R.N. Mariammal, K. Ramachandran, Increasing the reactive sites of ZnO nanoparticles by Li doping for ethanol sensing. Mater. Res. Express 6, 015024 (2018)CrossRef R.N. Mariammal, K. Ramachandran, Increasing the reactive sites of ZnO nanoparticles by Li doping for ethanol sensing. Mater. Res. Express 6, 015024 (2018)CrossRef
12.
Zurück zum Zitat M.A. Basyooni, M. Shaban, A.M. El Sayed, Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci. Rep. 7, 41716 (2017)CrossRef M.A. Basyooni, M. Shaban, A.M. El Sayed, Enhanced gas sensing properties of spin-coated Na-doped ZnO nanostructured films. Sci. Rep. 7, 41716 (2017)CrossRef
13.
Zurück zum Zitat S. Yu, H. Zhang, C. Lin, M. Bian, The enhancement of humidity sensing performance based on Eu-doped ZnO. Curr. Appl. Phys. 19, 82–88 (2019)CrossRef S. Yu, H. Zhang, C. Lin, M. Bian, The enhancement of humidity sensing performance based on Eu-doped ZnO. Curr. Appl. Phys. 19, 82–88 (2019)CrossRef
14.
Zurück zum Zitat X. Si, Y. Liu, X. Wu, W. Lei, J. Xu, W. Du, T. Zhou, J. Lin, The interaction between oxygen vacancies and doping atoms in ZnO. Mater. Des. 87, 969–973 (2015)CrossRef X. Si, Y. Liu, X. Wu, W. Lei, J. Xu, W. Du, T. Zhou, J. Lin, The interaction between oxygen vacancies and doping atoms in ZnO. Mater. Des. 87, 969–973 (2015)CrossRef
15.
Zurück zum Zitat A. Saaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)CrossRef A. Saaedi, R. Yousefi, Improvement of gas-sensing performance of ZnO nanorods by group-I elements doping. J. Appl. Phys. 122, 224505 (2017)CrossRef
16.
Zurück zum Zitat M.K. Gupta, N. Sinha, B.K. Singh, B. Kumar, Synthesis of K-doped p-type ZnO nanorods along (100) for ferroelectric and dielectric applications. Mater. Lett. 64, 1825–1828 (2010)CrossRef M.K. Gupta, N. Sinha, B.K. Singh, B. Kumar, Synthesis of K-doped p-type ZnO nanorods along (100) for ferroelectric and dielectric applications. Mater. Lett. 64, 1825–1828 (2010)CrossRef
17.
Zurück zum Zitat M.-L. Tu, Y.-K. Su, C.-Y. Ma, Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering. J. Appl. Phys. 100, 053705 (2006)CrossRef M.-L. Tu, Y.-K. Su, C.-Y. Ma, Nitrogen-doped p-type ZnO films prepared from nitrogen gas radio-frequency magnetron sputtering. J. Appl. Phys. 100, 053705 (2006)CrossRef
18.
Zurück zum Zitat W.-J. Lee, J. Kang, K.J. Chang, Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Phys. Rev. B 73, 024117 (2006)CrossRef W.-J. Lee, J. Kang, K.J. Chang, Defect properties and p-type doping efficiency in phosphorus-doped ZnO. Phys. Rev. B 73, 024117 (2006)CrossRef
19.
Zurück zum Zitat G.Y. Huang, C.Y. Wang, J.T. Wang, First-principles study of diffusion of Li, Na, K and Ag in ZnO. J. Phys. Condens. Matter 21, 345802 (2009)CrossRef G.Y. Huang, C.Y. Wang, J.T. Wang, First-principles study of diffusion of Li, Na, K and Ag in ZnO. J. Phys. Condens. Matter 21, 345802 (2009)CrossRef
20.
Zurück zum Zitat S.-K. Kim, S.A. Kim, C.-H. Lee, H.-J. Lee, S.-Y. Jeong, C.R. Cho, The structural and optical behaviors of K-doped ZnO∕Al2O3(0001) films. Appl. Phys. Lett. 85, 419–421 (2004)CrossRef S.-K. Kim, S.A. Kim, C.-H. Lee, H.-J. Lee, S.-Y. Jeong, C.R. Cho, The structural and optical behaviors of K-doped ZnO∕Al2O3(0001) films. Appl. Phys. Lett. 85, 419–421 (2004)CrossRef
21.
Zurück zum Zitat M. Holzki, H. Fouckhardt, T. Klotzbücher, Evanescent-field fiber sensor for the water content in lubricating oils with sensitivity increase by dielectrophoresis. Sens. Actuators A 184, 93–97 (2012)CrossRef M. Holzki, H. Fouckhardt, T. Klotzbücher, Evanescent-field fiber sensor for the water content in lubricating oils with sensitivity increase by dielectrophoresis. Sens. Actuators A 184, 93–97 (2012)CrossRef
22.
Zurück zum Zitat N. Mohseni Kiasari, P. Servati, Dielectrophoresis-assembled ZnO nanowire oxygen sensors. IEEE Electron. Dev. Lett. 32, 982–984 (2011)CrossRef N. Mohseni Kiasari, P. Servati, Dielectrophoresis-assembled ZnO nanowire oxygen sensors. IEEE Electron. Dev. Lett. 32, 982–984 (2011)CrossRef
23.
Zurück zum Zitat L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)CrossRef L. Chen, J. Zhang, Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A 178, 88–93 (2012)CrossRef
24.
Zurück zum Zitat W. Kim, M. Choi, K. Yong, Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B 209, 989–996 (2015)CrossRef W. Kim, M. Choi, K. Yong, Generation of oxygen vacancies in ZnO nanorods/films and their effects on gas sensing properties. Sens. Actuators B 209, 989–996 (2015)CrossRef
25.
Zurück zum Zitat H. Li, J. Zhang, B. Tao, L. Wan, W. Gong, Investigation of capacitive humidity sensing behavior of silicon nanowires. Physica E 41, 600–604 (2009)CrossRef H. Li, J. Zhang, B. Tao, L. Wan, W. Gong, Investigation of capacitive humidity sensing behavior of silicon nanowires. Physica E 41, 600–604 (2009)CrossRef
26.
Zurück zum Zitat T. Nagata, T. Nakamura, R. Hayakawa, T. Yoshimura, S. Oh, N. Hiroshiba, T. Chikyow, N. Fujimura, Y. Wakayama, Photoelectron spectroscopic study on monolayer pentacene thin-film/polar ZnO single-crystal hybrid interface. Appl. Phys. Express 10, 025702 (2017)CrossRef T. Nagata, T. Nakamura, R. Hayakawa, T. Yoshimura, S. Oh, N. Hiroshiba, T. Chikyow, N. Fujimura, Y. Wakayama, Photoelectron spectroscopic study on monolayer pentacene thin-film/polar ZnO single-crystal hybrid interface. Appl. Phys. Express 10, 025702 (2017)CrossRef
27.
Zurück zum Zitat A. Saaedi, R. Yousefi, F. Jamali-Sheini, A.K. Zak, M. Cheraghizade, M.R. Mahmoudian, M.A. Baghchesara, A.S. Dezaki, XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions. Physica E 79, 113–118 (2016)CrossRef A. Saaedi, R. Yousefi, F. Jamali-Sheini, A.K. Zak, M. Cheraghizade, M.R. Mahmoudian, M.A. Baghchesara, A.S. Dezaki, XPS studies and photocurrent applications of alkali-metals-doped ZnO nanoparticles under visible illumination conditions. Physica E 79, 113–118 (2016)CrossRef
28.
Zurück zum Zitat W. Zhou, X. Tang, P. Xing, W. Liu, P. Wu, Possible room-temperature ferromagnetism in SnO2 nanocrystalline powders with nonmagnetic K doping. Phys. Lett. A 376, 203–206 (2012)CrossRef W. Zhou, X. Tang, P. Xing, W. Liu, P. Wu, Possible room-temperature ferromagnetism in SnO2 nanocrystalline powders with nonmagnetic K doping. Phys. Lett. A 376, 203–206 (2012)CrossRef
29.
Zurück zum Zitat M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens. Actuators B 49, 179–185 (1998)CrossRef M. Matsuguchi, S. Umeda, Y. Sadaoka, Y. Sakai, Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens. Actuators B 49, 179–185 (1998)CrossRef
30.
Zurück zum Zitat N. Sun, Z. Ye, X. Kuang, W. Liu, G. Li, W. Bai, X. Tang, High sensitivity capacitive humidity sensors based on Zn1 − xNixO nanostructures and plausible sensing mechanism. J. Mater. Sci. 30, 1724–1738 (2018) N. Sun, Z. Ye, X. Kuang, W. Liu, G. Li, W. Bai, X. Tang, High sensitivity capacitive humidity sensors based on Zn1 − xNixO nanostructures and plausible sensing mechanism. J. Mater. Sci. 30, 1724–1738 (2018)
31.
Zurück zum Zitat Q. Qi, T. Zhang, Y. Zeng, H. Yang, Humidity sensing properties of KCl-doped Cu–Zn/CuO–ZnO nanoparticles. Sens. Actuators B 137, 21–26 (2009)CrossRef Q. Qi, T. Zhang, Y. Zeng, H. Yang, Humidity sensing properties of KCl-doped Cu–Zn/CuO–ZnO nanoparticles. Sens. Actuators B 137, 21–26 (2009)CrossRef
32.
Zurück zum Zitat S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B 85, 205–211 (2002)CrossRef S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators B 85, 205–211 (2002)CrossRef
33.
Zurück zum Zitat N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)CrossRef N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)CrossRef
34.
Zurück zum Zitat J.H. Anderson, G.A. Parks, Electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72, 3662–3668 (1968)CrossRef J.H. Anderson, G.A. Parks, Electrical conductivity of silica gel in the presence of adsorbed water. J. Phys. Chem. 72, 3662–3668 (1968)CrossRef
35.
Zurück zum Zitat Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137, 649–655 (2009)CrossRef Q. Qi, T. Zhang, S. Wang, X. Zheng, Humidity sensing properties of KCl-doped ZnO nanofibers with super-rapid response and recovery. Sens. Actuators B 137, 649–655 (2009)CrossRef
36.
Zurück zum Zitat A. Sharma, Y. Kumar, K. Mazumder, A.K. Rana, P.M. Shirage, Controlled Zn1 − xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanism. New J. Chem. 42, 8445–8457 (2018)CrossRef A. Sharma, Y. Kumar, K. Mazumder, A.K. Rana, P.M. Shirage, Controlled Zn1 − xNixO nanostructures for an excellent humidity sensor and a plausible sensing mechanism. New J. Chem. 42, 8445–8457 (2018)CrossRef
37.
Zurück zum Zitat C.D. Hatch, J.S. Wiese, C.C. Crane, K.J. Harris, H.G. Kloss, J. Baltrusaitis, Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir 28, 1790–1803 (2012)CrossRef C.D. Hatch, J.S. Wiese, C.C. Crane, K.J. Harris, H.G. Kloss, J. Baltrusaitis, Water adsorption on clay minerals as a function of relative humidity: application of BET and Freundlich adsorption models. Langmuir 28, 1790–1803 (2012)CrossRef
38.
Zurück zum Zitat M.N. Nounou, H.N. Nounou, Multiscale estimation of the Freundlich adsorption isotherm. Int. J. Environ. Sci. Technol. 7, 509–518 (2010)CrossRef M.N. Nounou, H.N. Nounou, Multiscale estimation of the Freundlich adsorption isotherm. Int. J. Environ. Sci. Technol. 7, 509–518 (2010)CrossRef
39.
Zurück zum Zitat N. Passe-Coutrin, S. Altenor, S. Gaspard, Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories. J. Colloid Interface Sci. 332, 515–519 (2009)CrossRef N. Passe-Coutrin, S. Altenor, S. Gaspard, Assessment of the surface area occupied by molecules on activated carbon from liquid phase adsorption data from a combination of the BET and the Freundlich theories. J. Colloid Interface Sci. 332, 515–519 (2009)CrossRef
40.
Zurück zum Zitat V.K. Tomer, N. Thangaraj, S. Gahlot, K. Kailasam, Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8, 19794–19803 (2016)CrossRef V.K. Tomer, N. Thangaraj, S. Gahlot, K. Kailasam, Cubic mesoporous Ag@CN: a high performance humidity sensor. Nanoscale 8, 19794–19803 (2016)CrossRef
41.
Zurück zum Zitat L.X. Xia, Z. Shen, T. Vargas, W.J. Sun, R.M. Ruan, Z.D. Xie, G.Z. Qiu, Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations. Biotechnol. Lett. 35, 2129–2136 (2013)CrossRef L.X. Xia, Z. Shen, T. Vargas, W.J. Sun, R.M. Ruan, Z.D. Xie, G.Z. Qiu, Attachment of Acidithiobacillus ferrooxidans onto different solid substrates and fitting through Langmuir and Freundlich equations. Biotechnol. Lett. 35, 2129–2136 (2013)CrossRef
42.
Zurück zum Zitat T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, J. Zhang, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015)CrossRef T. Yang, Y.Z. Yu, L.S. Zhu, X. Wu, X.H. Wang, J. Zhang, Fabrication of silver interdigitated electrodes on polyimide films via surface modification and ion-exchange technique and its flexible humidity sensor application. Sens. Actuators B 208, 327–333 (2015)CrossRef
43.
Zurück zum Zitat S. Yu, H. Zhang, C. Chen, C. Lin, Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sens. Actuators B 287, 526–534 (2019)CrossRef S. Yu, H. Zhang, C. Chen, C. Lin, Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle. Sens. Actuators B 287, 526–534 (2019)CrossRef
44.
Zurück zum Zitat L.-X. Zhao, S.-E. Song, N. Du, W.-G. Hou, A sorbent concentration-dependent Freundlich isotherm. Colloid Polym. Sci. 291, 541–550 (2012)CrossRef L.-X. Zhao, S.-E. Song, N. Du, W.-G. Hou, A sorbent concentration-dependent Freundlich isotherm. Colloid Polym. Sci. 291, 541–550 (2012)CrossRef
Metadaten
Titel
Preparation and properties of humidity sensor based on K-doped ZnO nanostructure
verfasst von
Yang Gu
Zi Ye
Ning Sun
Xuliang Kuang
Weijing Liu
Xiaojun Song
Lei Zhang
Wei Bai
Xiaodong Tang
Publikationsdatum
28.09.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 20/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-02230-y

Weitere Artikel der Ausgabe 20/2019

Journal of Materials Science: Materials in Electronics 20/2019 Zur Ausgabe

Neuer Inhalt