Skip to main content
Erschienen in: Journal of Polymer Research 4/2014

01.04.2014 | Original Paper

Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent

verfasst von: M. S. Seyed Dorraji, A. Mirmohseni, F. Tasselli, A. Criscuoli, M. Carraro, S. Gross, A. Figoli

Erschienen in: Journal of Polymer Research | Ausgabe 4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fe (III)-loaded chitosan (CS) hollow fibers (CS-Fe (III) HF) were successfully prepared according to the dry-wet spinning technique. The CS-Fe (III) HFs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis (TGA). Removal of pentavalent arsenic was studied through biosorption on CS-Fe (III) HF adsorptive membranes. The response surface methodology (RSM) was applied to investigate the influence of the main operating parameters such as contact time, pH, initial As (V) concentration and HFs dosage on the adsorption capacity of As (V). From the Pareto analysis, pH, [As (V)]o, [CS-Fe (III) HF membranes] and squared effect of [As(V)]o were found to produce the largest effect on biosorption of As (V). Kinetic studies showed that the pseudo-second-order kinetic model provides the best correlation to the experimental results. Equilibrium data fitted well with the Langmuir model with maximum adsorption capacity of 3,703 μg g−1. A laboratory scale glass membrane module consisting of three CS-Fe(III) HFs has also been prepared and tested for biosorption of As (V) at a real scale. Permeability of As (V) ions through the CS-Fe (III) HF membranes was 0.145 μmol m−2 h−1 bar −1.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chuang CL, Fan M, Xu M, Brown RC, Sung S, Saha B, Huang CP (2005) Adsorption of arsenic (V) by activated carbon prepared from oat hulls. Chemosphere 61:478–483CrossRef Chuang CL, Fan M, Xu M, Brown RC, Sung S, Saha B, Huang CP (2005) Adsorption of arsenic (V) by activated carbon prepared from oat hulls. Chemosphere 61:478–483CrossRef
2.
Zurück zum Zitat Gérente C, Andrès Y, McKay G, Le Cloirec P (2010) Removal of arsenic (V) onto chitosan: from sorption mechanism explanation to dynamic water treatment process. Chem Eng J 158:593–598CrossRef Gérente C, Andrès Y, McKay G, Le Cloirec P (2010) Removal of arsenic (V) onto chitosan: from sorption mechanism explanation to dynamic water treatment process. Chem Eng J 158:593–598CrossRef
3.
Zurück zum Zitat Bey S, Criscuoli A, Figoli A, Leopold A, Benamor M, Drioli E, Simone S (2010) Removal of As (V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant. Desalination 264:193–200CrossRef Bey S, Criscuoli A, Figoli A, Leopold A, Benamor M, Drioli E, Simone S (2010) Removal of As (V) by PVDF hollow fibers membrane contactors using Aliquat-336 as extractant. Desalination 264:193–200CrossRef
4.
Zurück zum Zitat Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104CrossRef Figoli A, Cassano A, Criscuoli A, Mozumder MSI, Uddin MT, Islam MA, Drioli E (2010) Influence of operating parameters on the arsenic removal by nanofiltration. Water Res 44:97–104CrossRef
5.
Zurück zum Zitat National Research Council (2001) Arsenic in drinking water. National Academy of Sciences, Washington, DC National Research Council (2001) Arsenic in drinking water. National Academy of Sciences, Washington, DC
6.
Zurück zum Zitat WHO (1998) Guidelines for drinking-water quality, Addendum to vol. 1, Recommendations Geneva WHO (1998) Guidelines for drinking-water quality, Addendum to vol. 1, Recommendations Geneva
7.
Zurück zum Zitat US Environmental Protection Agency (2001) Washington DC, USA. Panel 14: National Primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring, vol. 66 194 US Environmental Protection Agency (2001) Washington DC, USA. Panel 14: National Primary drinking water regulations: arsenic and clarifications to compliance and new source contaminants monitoring, vol. 66 194
8.
Zurück zum Zitat Baskan MB, Pala A (2009) Determination of arsenic removal efficiency by ferric ions using response surface methodology. J Hazard Mater 166:796–801CrossRef Baskan MB, Pala A (2009) Determination of arsenic removal efficiency by ferric ions using response surface methodology. J Hazard Mater 166:796–801CrossRef
9.
Zurück zum Zitat Donia AM, Atia AA, Mabrouk DH (2011) Fast kinetic and efficient removal of As (V) from aqueous solution using anion exchange resins. J Hazard Mater 191:1–7CrossRef Donia AM, Atia AA, Mabrouk DH (2011) Fast kinetic and efficient removal of As (V) from aqueous solution using anion exchange resins. J Hazard Mater 191:1–7CrossRef
10.
Zurück zum Zitat Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53CrossRef Mohan D, Pittman CU (2007) Arsenic removal from water/wastewater using adsorbents—a critical review. J Hazard Mater 142:1–53CrossRef
11.
Zurück zum Zitat Shen C, Shen Y, Wen Y, Wang H, Liu W (2011) Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res 45:5200–5210CrossRef Shen C, Shen Y, Wen Y, Wang H, Liu W (2011) Fast and highly efficient removal of dyes under alkaline conditions using magnetic chitosan-Fe(III) hydrogel. Water Res 45:5200–5210CrossRef
12.
Zurück zum Zitat Jang M, Min SH, Park JK, Tlachac EJ (2007) Hydrous ferric oxide incorporated diatomite for remediation of arsenic contaminated groundwater. Environ Sci Technol 41:3322–3328CrossRef Jang M, Min SH, Park JK, Tlachac EJ (2007) Hydrous ferric oxide incorporated diatomite for remediation of arsenic contaminated groundwater. Environ Sci Technol 41:3322–3328CrossRef
13.
Zurück zum Zitat Wang XL, Yang K, Tao S, Xing BS (2007) Sorption of aromatic organic contaminants by biopolymers effects of pH, copper (II) complexation, and cellulose coating. Environ Sci Technol 41:185–191CrossRef Wang XL, Yang K, Tao S, Xing BS (2007) Sorption of aromatic organic contaminants by biopolymers effects of pH, copper (II) complexation, and cellulose coating. Environ Sci Technol 41:185–191CrossRef
14.
Zurück zum Zitat Cheng R, Ou S, Xiang B, Li Y, Liao Q (2010) Equilibrium and molecular mechanism of anionic dyes adsorption onto copper(II) complex of dithiocarbamate-modified starch. Langmuir 26:752–758CrossRef Cheng R, Ou S, Xiang B, Li Y, Liao Q (2010) Equilibrium and molecular mechanism of anionic dyes adsorption onto copper(II) complex of dithiocarbamate-modified starch. Langmuir 26:752–758CrossRef
15.
Zurück zum Zitat Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu (II), Co(II), and Ni(II) ions. React Funct Polym 70:257–266CrossRef Monier M, Ayad DM, Wei Y, Sarhan AA (2010) Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu (II), Co(II), and Ni(II) ions. React Funct Polym 70:257–266CrossRef
16.
Zurück zum Zitat Gérente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127CrossRef Gérente C, Lee VKC, Le Cloirec P, McKay G (2007) Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Crit Rev Environ Sci Technol 37:41–127CrossRef
17.
Zurück zum Zitat Santos HHD, Demarchi CA, Rodrigues CA, Greneche JM, Nedelko N, Slawska-Waniewska A (2011) Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe). Chemosphere 82:278–283CrossRef Santos HHD, Demarchi CA, Rodrigues CA, Greneche JM, Nedelko N, Slawska-Waniewska A (2011) Adsorption of As(III) on chitosan-Fe-crosslinked complex (Ch-Fe). Chemosphere 82:278–283CrossRef
18.
Zurück zum Zitat Gupta A, Chauhan VS, Sankararamakrishnan N (2009) Preparation and evaluation of iron–chitosan composites for removal of As (III) and As (V) from arsenic contaminated real life groundwater. Water Res 43:3862–3870CrossRef Gupta A, Chauhan VS, Sankararamakrishnan N (2009) Preparation and evaluation of iron–chitosan composites for removal of As (III) and As (V) from arsenic contaminated real life groundwater. Water Res 43:3862–3870CrossRef
19.
Zurück zum Zitat Gang DD, Deng B, Lin L (2010) As (III) removal using an iron-impregnated chitosan sorbent. J Hazard Mater 182:156–161CrossRef Gang DD, Deng B, Lin L (2010) As (III) removal using an iron-impregnated chitosan sorbent. J Hazard Mater 182:156–161CrossRef
20.
Zurück zum Zitat Elwakeel KZ (2010) Environmental application of chitosan resins for the treatment of water and wastewater: a review. J Dispers Sci Technol 31:273–288CrossRef Elwakeel KZ (2010) Environmental application of chitosan resins for the treatment of water and wastewater: a review. J Dispers Sci Technol 31:273–288CrossRef
21.
Zurück zum Zitat Liu C, Bai R (2006) Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J Membr Sci 284:313–322CrossRef Liu C, Bai R (2006) Adsorptive removal of copper ions with highly porous chitosan/cellulose acetate blend hollow fiber membranes. J Membr Sci 284:313–322CrossRef
22.
Zurück zum Zitat Ghyl B, Kim CW (2002) Sorption properties of the composite fibers made of PAN and chitosan. J Appl Polym Sci 84:2505–2511CrossRef Ghyl B, Kim CW (2002) Sorption properties of the composite fibers made of PAN and chitosan. J Appl Polym Sci 84:2505–2511CrossRef
23.
Zurück zum Zitat Vincent T, Guibal E (2001) Cr(VI) extraction using aliquat 336 in hollow fiber module made of chitosan. Ind Eng Chem Res 40:1406–1411CrossRef Vincent T, Guibal E (2001) Cr(VI) extraction using aliquat 336 in hollow fiber module made of chitosan. Ind Eng Chem Res 40:1406–1411CrossRef
24.
Zurück zum Zitat Han W, Bai R (2010) A novel method for obtaining a high concentration chitosan solution and preparing a high strength chitosan hollow fiber membrane with an excellent adsorption capacity. J Appl Polym Sci 115:1913–1921CrossRef Han W, Bai R (2010) A novel method for obtaining a high concentration chitosan solution and preparing a high strength chitosan hollow fiber membrane with an excellent adsorption capacity. J Appl Polym Sci 115:1913–1921CrossRef
25.
Zurück zum Zitat Mirmohseni A, Seyed Dorraji MS, Figoli A, Tasselli F (2012) Chitosan hollow fibers as effective biosorbent toward dye: preparation and modeling. Bioresour Technol 121:212–220CrossRef Mirmohseni A, Seyed Dorraji MS, Figoli A, Tasselli F (2012) Chitosan hollow fibers as effective biosorbent toward dye: preparation and modeling. Bioresour Technol 121:212–220CrossRef
26.
Zurück zum Zitat Tasselli F, Mirmohseni A, Seyed Dorraji MS, Figoli (2013) A mechanical, swelling and adsorptive properties of dry-wet spun chitosan hollow fibers crosslinked with glutaraldehyde. React Funct Polym 73:218–223CrossRef Tasselli F, Mirmohseni A, Seyed Dorraji MS, Figoli (2013) A mechanical, swelling and adsorptive properties of dry-wet spun chitosan hollow fibers crosslinked with glutaraldehyde. React Funct Polym 73:218–223CrossRef
27.
Zurück zum Zitat Montgomery DC (2001) Design and analysis of experiments, 5th edn. John Wiley and Sons, New York Montgomery DC (2001) Design and analysis of experiments, 5th edn. John Wiley and Sons, New York
28.
Zurück zum Zitat Kayan B, Gözmen B (2012) Degradation of acid red 274 using H2O2 in subcritical water: application of response surface methodology. J Hazard Mater 201–202:100–106CrossRef Kayan B, Gözmen B (2012) Degradation of acid red 274 using H2O2 in subcritical water: application of response surface methodology. J Hazard Mater 201–202:100–106CrossRef
29.
Zurück zum Zitat Wang Y, Li B, Zhou Y, Jia D, Song Y (2011) CS-Fe(II, III) complex as precursor for magnetite nanocrystal. Polym Adv Technol 22:1681–1684CrossRef Wang Y, Li B, Zhou Y, Jia D, Song Y (2011) CS-Fe(II, III) complex as precursor for magnetite nanocrystal. Polym Adv Technol 22:1681–1684CrossRef
30.
Zurück zum Zitat Isayeva I, Sarkar Das S, Chang A, DeFoe J, Do Luu HM, Vorvolakos K, Patwardhan D, Whang J, Pollack S (2010) pH effect on the synthesis, shear properties, and homogeneity of iron-crosslinked hyaluronic acid-based gel/adhesion barrier. J Biomed Mater Res B 95:9–18CrossRef Isayeva I, Sarkar Das S, Chang A, DeFoe J, Do Luu HM, Vorvolakos K, Patwardhan D, Whang J, Pollack S (2010) pH effect on the synthesis, shear properties, and homogeneity of iron-crosslinked hyaluronic acid-based gel/adhesion barrier. J Biomed Mater Res B 95:9–18CrossRef
31.
Zurück zum Zitat Lee Y, Lee W (2010) Degradation of trichloroethylene by Fe (II) chelated with cross-linked chitosan in a modified Fenton reaction. J Hazard Mater 178:187–193CrossRef Lee Y, Lee W (2010) Degradation of trichloroethylene by Fe (II) chelated with cross-linked chitosan in a modified Fenton reaction. J Hazard Mater 178:187–193CrossRef
32.
Zurück zum Zitat Zhu H, Jiang R, Fu Y, Guan Y, Yao J, Xiao L, Zeng G (2012) Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286:41–48CrossRef Zhu H, Jiang R, Fu Y, Guan Y, Yao J, Xiao L, Zeng G (2012) Effective photocatalytic decolorization of methyl orange utilizing TiO2/ZnO/chitosan nanocomposite films under simulated solar irradiation. Desalination 286:41–48CrossRef
33.
Zurück zum Zitat Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928CrossRef Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928CrossRef
34.
Zurück zum Zitat Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337:439–448CrossRef Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337:439–448CrossRef
35.
Zurück zum Zitat Ghevariya CM, Bhatt JK, Dave BP (2011) Enhanced chrysene degradation by halotolerant achromobacter xylosoxidans using response surface methodology. Bioresour Technol 102:9668–9674CrossRef Ghevariya CM, Bhatt JK, Dave BP (2011) Enhanced chrysene degradation by halotolerant achromobacter xylosoxidans using response surface methodology. Bioresour Technol 102:9668–9674CrossRef
36.
Zurück zum Zitat Fu JF, Zhao YQ, Wu QL (2007) Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology. J Hazard Mater 144:499–505CrossRef Fu JF, Zhao YQ, Wu QL (2007) Optimising photoelectrocatalytic oxidation of fulvic acid using response surface methodology. J Hazard Mater 144:499–505CrossRef
37.
Zurück zum Zitat Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA (2012) Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87:614–620CrossRef Wu J, Zhang H, Oturan N, Wang Y, Chen L, Oturan MA (2012) Application of response surface methodology to the removal of the antibiotic tetracycline by electrochemical process using carbon-felt cathode and DSA (Ti/RuO2–IrO2) anode. Chemosphere 87:614–620CrossRef
38.
Zurück zum Zitat Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J Hazard Mater 171:551–562CrossRef Yetilmezsoy K, Demirel S, Vanderbei RJ (2009) Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. J Hazard Mater 171:551–562CrossRef
Metadaten
Titel
Preparation, characterization and application of iron (III)-loaded chitosan hollow fiber membranes as a new bio-based As (V) sorbent
verfasst von
M. S. Seyed Dorraji
A. Mirmohseni
F. Tasselli
A. Criscuoli
M. Carraro
S. Gross
A. Figoli
Publikationsdatum
01.04.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 4/2014
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-014-0399-2

Weitere Artikel der Ausgabe 4/2014

Journal of Polymer Research 4/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.