Skip to main content
Erschienen in: Journal of Materials Science 12/2014

01.06.2014

Preparation of dense mixed electron- and proton-conducting ceramic composite materials using solid-state reactive sintering: BaCe0.8Y0.1M0.1O3−δ–Ce0.8Y0.1M0.1O2−δ (M=Y, Yb, Er, Eu)

verfasst von: S. Ricote, A. Manerbino, N. P. Sullivan, W. G. Coors

Erschienen in: Journal of Materials Science | Ausgabe 12/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mixed electronic and protonic conductor materials were prepared using BaCe0.8Y0.1M0.1O3−δ (BCYM) as the protonic conductive phase and Ce0.8Y0.1M0.1O2−δ (MYDC) as the electronic conductive phase (in reducing atmosphere), with M=Y, Yb, Er, Eu. Dense specimens of these ceramic/ceramic composite materials (cercers) were prepared by solid-state reactive sintering: all the precursors for BCYM and MYDC were mixed, pelletized, and fired without any pre-calcination step of the individual ceramic phases. The X-ray diffraction patterns revealed the presence of the two desired phases. The study of the lattice parameters showed that the Y and M co-dopants were fairly well distributed between the perovskite phase BCYM and the fluorite phase MYDC. This interesting discovery is of importance for the preparation of two-phase ceramic materials. In addition to the structural study, the samples were analyzed by scanning electron microscopy and were found to be free of any undesirable phases. The two ceramic phases could easily be distinguished using the back-scattered electron mode, with grains between 10 and 30 microns. Energy dispersive X-ray spectroscopy confirmed the distribution of the co-dopant between the two phases.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Qi X, Lin YS (2000) Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ion 130:149–156CrossRef Qi X, Lin YS (2000) Electrical conduction and hydrogen permeation through mixed proton–electron conducting strontium cerate membranes. Solid State Ion 130:149–156CrossRef
2.
Zurück zum Zitat Son SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2004) Hydrogen permeability of SrCe1–xMxO3−δ (x = 0.05, M = Eu, Sm). Solid State Ion 167:1–10CrossRef Son SJ, Wachsman ED, Rhodes J, Dorris SE, Balachandran U (2004) Hydrogen permeability of SrCe1–xMxO3−δ (x = 0.05, M = Eu, Sm). Solid State Ion 167:1–10CrossRef
3.
Zurück zum Zitat Bentzer HK, Bonanos N, Phair JW (2010) EMF measurements on mixed protonic/electronic conductors for hydrogen membrane applications. Solid State Ion 181:249–255CrossRef Bentzer HK, Bonanos N, Phair JW (2010) EMF measurements on mixed protonic/electronic conductors for hydrogen membrane applications. Solid State Ion 181:249–255CrossRef
4.
Zurück zum Zitat Erdal S, Kalland LE, Hancke R, Polfus J, Haugsrud R, Norby T, Magraso A (2012) Defect structure and its nomenclature for mixed conducting lanthanum tungstates La28−xW4+xO54+3x/2. Int J Hydrog Energy 37:8051–8055CrossRef Erdal S, Kalland LE, Hancke R, Polfus J, Haugsrud R, Norby T, Magraso A (2012) Defect structure and its nomenclature for mixed conducting lanthanum tungstates La28−xW4+xO54+3x/2. Int J Hydrog Energy 37:8051–8055CrossRef
5.
Zurück zum Zitat Escolastico S, Solis C, Serra JM (2011) Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. Int J Hydrog Energy 36:11946–11954CrossRef Escolastico S, Solis C, Serra JM (2011) Hydrogen separation and stability study of ceramic membranes based on the system Nd5LnWO12. Int J Hydrog Energy 36:11946–11954CrossRef
6.
Zurück zum Zitat Zuo CD, Lee TH, Dorris SE, Balachandran U, Liu ML (2006) Composite Ni–Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. J Power Sources 159:1291–1295CrossRef Zuo CD, Lee TH, Dorris SE, Balachandran U, Liu ML (2006) Composite Ni–Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation. J Power Sources 159:1291–1295CrossRef
7.
Zurück zum Zitat Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W (2010) Influence of fabrication process of Ni BaCe0.7Zr0.1Y0.2O3−d cermet on the hydrogen permeation performance. J Alloys Compd 508:5–8CrossRef Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W (2010) Influence of fabrication process of Ni BaCe0.7Zr0.1Y0.2O3−d cermet on the hydrogen permeation performance. J Alloys Compd 508:5–8CrossRef
8.
Zurück zum Zitat Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W (2010) Effect of Sm-doping on the hydrogen permeation of Ni-La2Ce2O7 mixed protonic-electronic conductor. Int J Hydrog Energy 35:4508–4511CrossRef Yan LT, Sun WP, Bi L, Fang SM, Tao ZT, Liu W (2010) Effect of Sm-doping on the hydrogen permeation of Ni-La2Ce2O7 mixed protonic-electronic conductor. Int J Hydrog Energy 35:4508–4511CrossRef
9.
Zurück zum Zitat Fish JS, Ricote S, Holgate T, Lenrick F, Wallenberg LR, O’Hayre R, Bonanos N (2013) Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3−d/Sr0.95Ti0.9Nb0.1O3−d (BCZY27/STN95). J Mater Sci 48:6177–6185. doi:10.1023/A:1011230821605 CrossRef Fish JS, Ricote S, Holgate T, Lenrick F, Wallenberg LR, O’Hayre R, Bonanos N (2013) Synthesis by spark plasma sintering of a novel protonic/electronic conductor composite: BaCe0.2Zr0.7Y0.1O3−d/Sr0.95Ti0.9Nb0.1O3−d (BCZY27/STN95). J Mater Sci 48:6177–6185. doi:10.​1023/​A:​1011230821605 CrossRef
10.
Zurück zum Zitat Elangovan S, Nair GB and Small TA (2007) Ceramic mixed protonic/electronic conducting membranes for hydrogen separation, Patent US 7,258,820 B2 Ceramatec Inc Elangovan S, Nair GB and Small TA (2007) Ceramic mixed protonic/electronic conducting membranes for hydrogen separation, Patent US 7,258,820 B2 Ceramatec Inc
11.
Zurück zum Zitat Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369CrossRef Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369CrossRef
12.
Zurück zum Zitat Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359CrossRef Kreuer KD (2003) Proton-conducting oxides. Annu Rev Mater Res 33:333–359CrossRef
13.
Zurück zum Zitat Chiodelli G, Malavasi L, Tealdi C, Barison S, Battagliarin M, Doubova LM, Fabrizio M, Mortalo C, Gerbasi R (2009) Role of synthetic route on the transport properties of BaCe1−x Y x O3 proton conductor. J Alloys Compd 470:477–785CrossRef Chiodelli G, Malavasi L, Tealdi C, Barison S, Battagliarin M, Doubova LM, Fabrizio M, Mortalo C, Gerbasi R (2009) Role of synthetic route on the transport properties of BaCe1−x Y x O3 proton conductor. J Alloys Compd 470:477–785CrossRef
14.
Zurück zum Zitat Wang S, Zhao F, Zhang L, Brinkman K, Chen F (2010) Stability and electrical property of Ba1−xSrxCe0.8Y0.2O3−d high temperature proton conductor. J Alloys Compod 506:263–267CrossRef Wang S, Zhao F, Zhang L, Brinkman K, Chen F (2010) Stability and electrical property of Ba1−xSrxCe0.8Y0.2O3−d high temperature proton conductor. J Alloys Compod 506:263–267CrossRef
15.
Zurück zum Zitat Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3−d. Science 326:126–129CrossRef Yang L, Wang S, Blinn K, Liu M, Liu Z, Cheng Z, Liu M (2009) Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2−xYbxO3−d. Science 326:126–129CrossRef
16.
Zurück zum Zitat Ding H, Xie Y, Xue X (2011) Electrochemical performance of BaZr0.1Ce0.7Y0.2−xYbxO3−d electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+d cathode. J Power Sources 19:2602–2607CrossRef Ding H, Xie Y, Xue X (2011) Electrochemical performance of BaZr0.1Ce0.7Y0.2−xYbxO3−d electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+d cathode. J Power Sources 19:2602–2607CrossRef
17.
Zurück zum Zitat Dincer E (1991) Behavior of pure and doped ceria in molten alkali-carbonates, PhD dissertation, Case Western Reserve University Dincer E (1991) Behavior of pure and doped ceria in molten alkali-carbonates, PhD dissertation, Case Western Reserve University
18.
Zurück zum Zitat Park SY, Yoo HI (2005) Defect-chemical role of Mn in Gd-doped CeO2. Solid State Ion 176:1485–1490CrossRef Park SY, Yoo HI (2005) Defect-chemical role of Mn in Gd-doped CeO2. Solid State Ion 176:1485–1490CrossRef
19.
Zurück zum Zitat Guan X, Zhou H, Wang Y, Zhang J (2008) Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J Alloys Compd 464:310–316CrossRef Guan X, Zhou H, Wang Y, Zhang J (2008) Preparation and properties of Gd3+ and Y3+ co-doped ceria-based electrolytes for intermediate temperature solid oxide fuel cells. J Alloys Compd 464:310–316CrossRef
20.
Zurück zum Zitat Norby T, Larring Y (2000) Mixed hydrogen ion-electronic conductors for hydrogen permeable membranes. Solid State Ion 136–137:139–148CrossRef Norby T, Larring Y (2000) Mixed hydrogen ion-electronic conductors for hydrogen permeable membranes. Solid State Ion 136–137:139–148CrossRef
21.
Zurück zum Zitat Tong J, Clark D, Hoban M, O’Hayre R (2010) Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ion 181:496–503CrossRef Tong J, Clark D, Hoban M, O’Hayre R (2010) Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ion 181:496–503CrossRef
22.
Zurück zum Zitat Coors WG (2011) Co-ionic conduction in protonic ceramics of the solid solution, BaCexZr(1−x)Y(y−x)O3−d; part I: fabrication and microstructure, ceramic materials, book 3. Intech, Croatia Coors WG (2011) Co-ionic conduction in protonic ceramics of the solid solution, BaCexZr(1−x)Y(y−x)O3−d; part I: fabrication and microstructure, ceramic materials, book 3. Intech, Croatia
23.
Zurück zum Zitat Tong J, Clark D, Bernau L, Sanders M, O’Hayre R (2010) Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method. J Mater Chem 20:6333–6341CrossRef Tong J, Clark D, Bernau L, Sanders M, O’Hayre R (2010) Proton-conducting yttrium-doped barium cerate ceramics synthesized by a cost-effective solid-state reactive sintering method. J Mater Chem 20:6333–6341CrossRef
24.
Zurück zum Zitat Ricote S, Bonanos N, Manerbino A, Coors WG (2012) Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−d) prepared by solid state reactive sintering at 1500°C. Int J Hydrog Energy 37:7954–7961CrossRef Ricote S, Bonanos N, Manerbino A, Coors WG (2012) Conductivity study of dense BaCexZr(0.9−x)Y0.1O(3−d) prepared by solid state reactive sintering at 1500°C. Int J Hydrog Energy 37:7954–7961CrossRef
25.
Zurück zum Zitat Takeuchi K, Loong CK, Richardson JW Jr, Guan J, Dorris SE, Balachandran U (2000) The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ion 138:63–77CrossRef Takeuchi K, Loong CK, Richardson JW Jr, Guan J, Dorris SE, Balachandran U (2000) The crystal structures and phase transitions in Y-doped BaCeO3: their dependence on Y concentration and hydrogen doping. Solid State Ion 138:63–77CrossRef
26.
Zurück zum Zitat Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRef Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A 32:751–767CrossRef
27.
Zurück zum Zitat Bevan DJM, Summerville B (1979) Mixed rare earth oxides. In: Gschneidner KA, Eyring L (eds) Handbook of the physics and chemistry of rare earths. Westralian Sands Limited, Capel Bevan DJM, Summerville B (1979) Mixed rare earth oxides. In: Gschneidner KA, Eyring L (eds) Handbook of the physics and chemistry of rare earths. Westralian Sands Limited, Capel
28.
Zurück zum Zitat Hong SJ, Virkar AV (1995) Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J Am Ceram Soc 78:433–439CrossRef Hong SJ, Virkar AV (1995) Lattice parameters and densities of rare-earth oxide doped ceria electrolytes. J Am Ceram Soc 78:433–439CrossRef
29.
Zurück zum Zitat Zhang TS, Ma J, Huang HT, Hing P, Xia ZT, Chan SH, Kilner JA (2003) Effects of dopant concentration and aging on the electrical properties of Y-doped ceria electrolytes. Solid State Sci 5:1505–1511CrossRef Zhang TS, Ma J, Huang HT, Hing P, Xia ZT, Chan SH, Kilner JA (2003) Effects of dopant concentration and aging on the electrical properties of Y-doped ceria electrolytes. Solid State Sci 5:1505–1511CrossRef
30.
Zurück zum Zitat Kim DJ (1989) Lattice-parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid-solutions. J Am Ceram Soc 72:1415–1421CrossRef Kim DJ (1989) Lattice-parameters, ionic conductivities, and solubility limits in fluorite-structure MO2 oxide (M = Hf4+, Zr4+, Ce4+, Th4+, U4+) solid-solutions. J Am Ceram Soc 72:1415–1421CrossRef
31.
Zurück zum Zitat Shing OP, Ping TY, Hin TYY, Zainal Z (2011) Synthesis and ionic conductivity of mechanically synthesized yttrium-doped ceria solid solutions. J Appl Sci 11:1285–1290CrossRef Shing OP, Ping TY, Hin TYY, Zainal Z (2011) Synthesis and ionic conductivity of mechanically synthesized yttrium-doped ceria solid solutions. J Appl Sci 11:1285–1290CrossRef
Metadaten
Titel
Preparation of dense mixed electron- and proton-conducting ceramic composite materials using solid-state reactive sintering: BaCe0.8Y0.1M0.1O3−δ–Ce0.8Y0.1M0.1O2−δ (M=Y, Yb, Er, Eu)
verfasst von
S. Ricote
A. Manerbino
N. P. Sullivan
W. G. Coors
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8129-z

Weitere Artikel der Ausgabe 12/2014

Journal of Materials Science 12/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.