Skip to main content

2017 | OriginalPaper | Buchkapitel

Principles of Sulfide Oxidation and Acid Rock Drainage

verfasst von : Anita Parbhakar-Fox, Bernd Lottermoser

Erschienen in: Environmental Indicators in Metal Mining

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oxidation of sulfide minerals releases sulfuric acid and dissolved metals, with iron sulfides pyrite (FeS2) and pyrrhotite (Fe(1−x)S) recognized as the most common acid-forming minerals. Several factors control the oxidation rate including: the oxidant type, sulfide morphology, microbial action, and trace element contents. Whilst metal sulfides such as galena and sphalerite are less acid-forming, they are typically sources of environmentally significant elements such as Cd, Pb and Zn. Common sulfide oxidation reaction products are metal-sulfate efflorescent salts. Dissolution of these minerals is critical to the storage and transport of acids and metals released upon weathering of mineralized rock or mine wastes. Acid formed by sulfide oxidation can be consumed through reaction with gangue minerals. Neutralization is primarily offered by dissolution of carbonate minerals with calcite and dolomite the most effective. Factors affecting carbonate reactivity include: grain size, texture and the presence of trace elements which can influence a mineral’s resistance to weathering. Silicate minerals such as olivine, wollastonite and serpentinite are recognized as effective longer term neutralizers. Lesser neutralizing potential contributions from phyllosilicates, pyroxenes, amphiboles and feldspars have been reported. Micas, clays and organic matter can temporarily adsorb H+ ions through cation exchange reactions, with gibbsite and ferric hydroxide recognized as offering neutralizing capacity under acidic conditions. Ultimately, the balance of acid producing and acid consuming chemical reactions will determine the production of acid rock drainage (ARD).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbassi R, Khan F, Hawbolt K (2009) Prediction of minerals producing acid mine drainage using a computer-assisted thermodynamic chemical equilibrium model. Mine Water Environ 28:74–78CrossRef Abbassi R, Khan F, Hawbolt K (2009) Prediction of minerals producing acid mine drainage using a computer-assisted thermodynamic chemical equilibrium model. Mine Water Environ 28:74–78CrossRef
Zurück zum Zitat Acero P, Cama J, Ayora C (2007) Rate law for galena dissolution in acidic environment. Chem Geol 245:219–229CrossRef Acero P, Cama J, Ayora C (2007) Rate law for galena dissolution in acidic environment. Chem Geol 245:219–229CrossRef
Zurück zum Zitat Asta MP, Cama J, Ayora C, Acero P, de Giudici G (2010) Arsenopyrite dissolution rates in O2-bearing solutions. Chem Geol 273:272–285CrossRef Asta MP, Cama J, Ayora C, Acero P, de Giudici G (2010) Arsenopyrite dissolution rates in O2-bearing solutions. Chem Geol 273:272–285CrossRef
Zurück zum Zitat Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152CrossRef Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44:139–152CrossRef
Zurück zum Zitat Baker-Austin C, Potrykus J, Wexler M, Bond PL, Dopson M (2010) Biofilm development in the extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 14:485–491CrossRef Baker-Austin C, Potrykus J, Wexler M, Bond PL, Dopson M (2010) Biofilm development in the extremely acidophilic archaeon ‘Ferroplasma acidarmanus’ Fer1. Extremophiles 14:485–491CrossRef
Zurück zum Zitat Balci NC (2010) Effect of bacterial activity on trace metals release from oxidation of sphalerite at low pH (< 3) and implications for AMD environment. Environ Earth Sci 60:485–493CrossRef Balci NC (2010) Effect of bacterial activity on trace metals release from oxidation of sphalerite at low pH (< 3) and implications for AMD environment. Environ Earth Sci 60:485–493CrossRef
Zurück zum Zitat Becker M (2009) The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits and its effect on flotation performance. Unpublished DPhil thesis, University of Pretoria, Pretoria Becker M (2009) The mineralogy and crystallography of pyrrhotite from selected nickel and PGE ore deposits and its effect on flotation performance. Unpublished DPhil thesis, University of Pretoria, Pretoria
Zurück zum Zitat Belzile N, Chen YW, Cai MF, Li Y (2004) A review on pyrrhotite oxidation. J Geochem Explor 84:65–76CrossRef Belzile N, Chen YW, Cai MF, Li Y (2004) A review on pyrrhotite oxidation. J Geochem Explor 84:65–76CrossRef
Zurück zum Zitat Biegler T (1976) Oxygen reduction on sulfide minerals: part II. Relation between activity and semiconducting properties of pyrite electrodes. J Electroanal Chem 70:265–275CrossRef Biegler T (1976) Oxygen reduction on sulfide minerals: part II. Relation between activity and semiconducting properties of pyrite electrodes. J Electroanal Chem 70:265–275CrossRef
Zurück zum Zitat Blanchard M, Alfredsson M, Brodholt J, Wright K, Catlow CRA (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: a DFT study. Geochim Cosmochim Acta 71:624–630CrossRef Blanchard M, Alfredsson M, Brodholt J, Wright K, Catlow CRA (2007) Arsenic incorporation into FeS2 pyrite and its influence on dissolution: a DFT study. Geochim Cosmochim Acta 71:624–630CrossRef
Zurück zum Zitat Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971CrossRef Bond PL, Druschel GK, Banfield JF (2000) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971CrossRef
Zurück zum Zitat Bowell RJ, Rees SB, Parshley JV (2000) Geochemical predictions of metal leaching and acid generation: geologic controls and baseline assessment. In: Cluer JK, Price JG, Struhsacker EM, Hardyman RF, Morris CL (eds) Geology and ore deposits 2000: the great basin and beyond: Geological Society of Nevada symposium proceedings, Reno/Sparks, pp 799–823 Bowell RJ, Rees SB, Parshley JV (2000) Geochemical predictions of metal leaching and acid generation: geologic controls and baseline assessment. In: Cluer JK, Price JG, Struhsacker EM, Hardyman RF, Morris CL (eds) Geology and ore deposits 2000: the great basin and beyond: Geological Society of Nevada symposium proceedings, Reno/Sparks, pp 799–823
Zurück zum Zitat Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometall 152:33–43CrossRef Bryan CG, Watkin EL, McCredden TJ, Wong ZR, Harrison STL, Kaksonen AH (2015) The use of pyrite as a source of lixiviant in the bioleaching of electronic waste. Hydrometall 152:33–43CrossRef
Zurück zum Zitat Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315CrossRef Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315CrossRef
Zurück zum Zitat Cook NJ, Ciobanu CL, Pring A, Skinner W, Danyushevsky L, Shimizu M, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICP-MS study. Geochim Cosmochim Acta 73:4761–4791CrossRef Cook NJ, Ciobanu CL, Pring A, Skinner W, Danyushevsky L, Shimizu M, Saini-Eidukat B, Melcher F (2009) Trace and minor elements in sphalerite: a LA-ICP-MS study. Geochim Cosmochim Acta 73:4761–4791CrossRef
Zurück zum Zitat Corkhill CL, Vaughan DJ (2009) Arsenopyrite oxidation—a review. Appl Geochem 24:2342–2361CrossRef Corkhill CL, Vaughan DJ (2009) Arsenopyrite oxidation—a review. Appl Geochem 24:2342–2361CrossRef
Zurück zum Zitat Craig JR, Vokes FM, Solberg TN (1998) Pyrite: physical and chemical textures. Miner Deposita 34:82–101CrossRef Craig JR, Vokes FM, Solberg TN (1998) Pyrite: physical and chemical textures. Miner Deposita 34:82–101CrossRef
Zurück zum Zitat Crundwell FK (1996) The formation of biofilms of iron-oxidising bacteria on pyrite. Min Eng 9:1081–1089CrossRef Crundwell FK (1996) The formation of biofilms of iron-oxidising bacteria on pyrite. Min Eng 9:1081–1089CrossRef
Zurück zum Zitat Crundwell FK (2003) How do bacteria interact with minerals? Hydrometall 71:75–81CrossRef Crundwell FK (2003) How do bacteria interact with minerals? Hydrometall 71:75–81CrossRef
Zurück zum Zitat Dold B (2005) Basic concepts of environmental geochemistry of sulfide mine-waste. XXIV Curso Latinoamericano de Metalogenia UNESCO—SEG, Lima, Peru Dold B (2005) Basic concepts of environmental geochemistry of sulfide mine-waste. XXIV Curso Latinoamericano de Metalogenia UNESCO—SEG, Lima, Peru
Zurück zum Zitat Edwards KJ, Schrenk MO, Hamers RJ, Banfield JF (1998) Microbial oxidation of pyrite: experiments using microorganisms for an extreme acid environment. Am Mineral 83:1444–1453CrossRef Edwards KJ, Schrenk MO, Hamers RJ, Banfield JF (1998) Microbial oxidation of pyrite: experiments using microorganisms for an extreme acid environment. Am Mineral 83:1444–1453CrossRef
Zurück zum Zitat Edwards KJ, Goebel B, Rogers TM, Schrenk MO, Gihring TM, Cardona MM, Hu B, McGuire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179CrossRef Edwards KJ, Goebel B, Rogers TM, Schrenk MO, Gihring TM, Cardona MM, Hu B, McGuire MM, Hamers RJ, Pace NR, Banfield JF (1999) Geomicrobiology of pyrite (FeS2) dissolution: case study at Iron Mountain, California. Geomicrobiol J 16:155–179CrossRef
Zurück zum Zitat Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ, Banfield JF (2000) Geochemical and biological aspects of sulphide mineral dissolution: lessons from Iron Mountain, California. Chem Geol 169:383–397 Edwards KJ, Bond PL, Druschel GK, McGuire MM, Hamers RJ, Banfield JF (2000) Geochemical and biological aspects of sulphide mineral dissolution: lessons from Iron Mountain, California. Chem Geol 169:383–397
Zurück zum Zitat Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia Pac J Chem Eng 2:47–62CrossRef Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia Pac J Chem Eng 2:47–62CrossRef
Zurück zum Zitat Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Env Sci Technol 25:141–199CrossRef Evangelou VP, Zhang YL (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Crit Rev Env Sci Technol 25:141–199CrossRef
Zurück zum Zitat Florian B, Noel N, Sand W (2010) Visualization of initial attachment of bioleaching bacteria using combined atomic force and epifluorescence microscopy. Min Eng 23:532–535CrossRef Florian B, Noel N, Sand W (2010) Visualization of initial attachment of bioleaching bacteria using combined atomic force and epifluorescence microscopy. Min Eng 23:532–535CrossRef
Zurück zum Zitat Garcia O, Bigham JM, Tuovinen OH (1995) Sphalerite oxidation by Thiobacillus fertooxidans and Thiobacillus thiooxidans. Can J Microbiol 41:578–584CrossRef Garcia O, Bigham JM, Tuovinen OH (1995) Sphalerite oxidation by Thiobacillus fertooxidans and Thiobacillus thiooxidans. Can J Microbiol 41:578–584CrossRef
Zurück zum Zitat Gilbert SE, Cooke DR, Hollings P (2003) The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environ Geol 44:687–697CrossRef Gilbert SE, Cooke DR, Hollings P (2003) The effects of hardpan layers on the water chemistry from the leaching of pyrrhotite-rich tailings material. Environ Geol 44:687–697CrossRef
Zurück zum Zitat Harvey MC, Schreiber ME, Rimstidt JD, Griffith MM (2006) Scorodite dissolution kinetics: implications for arsenic release. Environ Sci Technol 40:6709–6714CrossRef Harvey MC, Schreiber ME, Rimstidt JD, Griffith MM (2006) Scorodite dissolution kinetics: implications for arsenic release. Environ Sci Technol 40:6709–6714CrossRef
Zurück zum Zitat Hudson-Edwards KA, Lottermoser BG, Jamieson HE (2011) Mine wastes: past, present, future. Elements 7:375–380CrossRef Hudson-Edwards KA, Lottermoser BG, Jamieson HE (2011) Mine wastes: past, present, future. Elements 7:375–380CrossRef
Zurück zum Zitat Hustwit CC, Ackman TE, Erikson PE (1992) The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Environ Res 64:817–823CrossRef Hustwit CC, Ackman TE, Erikson PE (1992) The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Environ Res 64:817–823CrossRef
Zurück zum Zitat Jambor JL (1994) Mineralogy of sulfide rich tailings and their oxidation products. In: Blowes DW, Jambor JL (eds) The environmental geochemistry of sulfide mine wastes. Mineralogical Association of Canada, Short Course Series 22, pp 59–102 Jambor JL (1994) Mineralogy of sulfide rich tailings and their oxidation products. In: Blowes DW, Jambor JL (eds) The environmental geochemistry of sulfide mine wastes. Mineralogical Association of Canada, Short Course Series 22, pp 59–102
Zurück zum Zitat Jambor JL (2003) Mine-waste mineralogy and mineralogical perspectives of acid-base accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series 31, pp 117–145 Jambor JL (2003) Mine-waste mineralogy and mineralogical perspectives of acid-base accounting. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series 31, pp 117–145
Zurück zum Zitat Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40:303–350CrossRef Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Mineral Geochem 40:303–350CrossRef
Zurück zum Zitat Jambor JL, Dutrizac JE, Groat L, Raudsepp M (2002) Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environ Geol 43:1–17CrossRef Jambor JL, Dutrizac JE, Groat L, Raudsepp M (2002) Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environ Geol 43:1–17CrossRef
Zurück zum Zitat Keith CN, Vaughan DJ (2000) Mechanisms and rates of sulfide oxidation in relation to the problems of acid rock (mine) drainage. In: Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management, mineralogical society series 9, pp 117–139 Keith CN, Vaughan DJ (2000) Mechanisms and rates of sulfide oxidation in relation to the problems of acid rock (mine) drainage. In: Environmental mineralogy: microbial interactions, anthropogenic influences, contaminated land and waste management, mineralogical society series 9, pp 117–139
Zurück zum Zitat Kimball BK, Rimstidt JD, Brantley SL (2010) Chalcopyrite dissolution rate laws. Appl Geochem 25:972–983CrossRef Kimball BK, Rimstidt JD, Brantley SL (2010) Chalcopyrite dissolution rate laws. Appl Geochem 25:972–983CrossRef
Zurück zum Zitat Kwong YTJ (1993) Prediction and prevention of acid rock drainage from a geological and mineralogical perspective. MEND report 1.32.1, NHRI contribution CS-92054, Ottawa, Ontario Kwong YTJ (1993) Prediction and prevention of acid rock drainage from a geological and mineralogical perspective. MEND report 1.32.1, NHRI contribution CS-92054, Ottawa, Ontario
Zurück zum Zitat Kwong YTJ (1995) Thoughts on ways to improve acid drainage and metal leaching prediction for metal mines. US geological survey water resources investigations report, pp 95–4227 Kwong YTJ (1995) Thoughts on ways to improve acid drainage and metal leaching prediction for metal mines. US geological survey water resources investigations report, pp 95–4227
Zurück zum Zitat Kwong YTJ, Swerhone GW, Lawrence JR (2003) Galvanic sulfide oxidation as a metal-leaching mechanism and its environmental implications. Geochem Explor Env Anal 3:337–343CrossRef Kwong YTJ, Swerhone GW, Lawrence JR (2003) Galvanic sulfide oxidation as a metal-leaching mechanism and its environmental implications. Geochem Explor Env Anal 3:337–343CrossRef
Zurück zum Zitat Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, García-Meza JV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometall 103:35–44CrossRef Lara RH, Valdez-Pérez D, Rodríguez AG, Navarro-Contreras HR, García-Meza JV (2010) Interfacial insights of pyrite colonized by Acidithiobacillus thiooxidans cells under acidic conditions. Hydrometall 103:35–44CrossRef
Zurück zum Zitat Leathen WW, Braley SA, McIntyre ID. (1953a) The role of bacteria in the formation of acid from certain sulphuric constituents associated with bituminous coal, Thiobacillus thioxidans. Appl Microbiol 1:61–64 Leathen WW, Braley SA, McIntyre ID. (1953a) The role of bacteria in the formation of acid from certain sulphuric constituents associated with bituminous coal, Thiobacillus thioxidans. Appl Microbiol 1:61–64
Zurück zum Zitat Leathen WW, Braley SA, McIntyre ID (1953b) The role of bacteria in the formation of acid from certain sulphuric constituents associated with bituminous coal, II Ferrous-iron oxidising bacteria. Appl Microbiol 1:65–68 Leathen WW, Braley SA, McIntyre ID (1953b) The role of bacteria in the formation of acid from certain sulphuric constituents associated with bituminous coal, II Ferrous-iron oxidising bacteria. Appl Microbiol 1:65–68
Zurück zum Zitat Lee E, Han Y, Park J, Hong J, Silva RA, Kim S, Kim H (2015) Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J Environ Manag 147:124–131CrossRef Lee E, Han Y, Park J, Hong J, Silva RA, Kim S, Kim H (2015) Bioleaching of arsenic from highly contaminated mine tailings using Acidithiobacillus thiooxidans. J Environ Manag 147:124–131CrossRef
Zurück zum Zitat Li J, Kawashima N, Kaplun K, Absolon VJ, Gerson AR (2010) Chalcopyrite leaching: the rate controlling factors. Geochim Cosmochim Acta 74:2881–2893CrossRef Li J, Kawashima N, Kaplun K, Absolon VJ, Gerson AR (2010) Chalcopyrite leaching: the rate controlling factors. Geochim Cosmochim Acta 74:2881–2893CrossRef
Zurück zum Zitat Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts, 3rd edn. Springer, Berlin 400 ppCrossRef Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts, 3rd edn. Springer, Berlin 400 ppCrossRef
Zurück zum Zitat Ma S, Banfield JF (2011) Micron-scale Fe2+/Fe3+, intermediate sulfur species and O2 gradients across the biofilm–solution–sediment interface control biofilm organization. Geochim Cosmochim Acta 75:3568–3580CrossRef Ma S, Banfield JF (2011) Micron-scale Fe2+/Fe3+, intermediate sulfur species and O2 gradients across the biofilm–solution–sediment interface control biofilm organization. Geochim Cosmochim Acta 75:3568–3580CrossRef
Zurück zum Zitat Mielke RE, Pace DL, Porter T, Southam G (2003) A critical stage in the formation of acid mine drainage: colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology 1:81–90CrossRef Mielke RE, Pace DL, Porter T, Southam G (2003) A critical stage in the formation of acid mine drainage: colonization of pyrite by Acidithiobacillus ferrooxidans under pH-neutral conditions. Geobiology 1:81–90CrossRef
Zurück zum Zitat Moncur MC, Jambor JL, Ptacek CJ, Blowes DW (2009) Mine drainage from the weathering of sulfide minerals and magnetite. Appl Geochem 24:2362–2373CrossRef Moncur MC, Jambor JL, Ptacek CJ, Blowes DW (2009) Mine drainage from the weathering of sulfide minerals and magnetite. Appl Geochem 24:2362–2373CrossRef
Zurück zum Zitat Morth AH, Smith EE, Shumate KS (1972) Pyrite systems: A mathematical model contract report for the US protection agency. EPA-R2 72 002 Morth AH, Smith EE, Shumate KS (1972) Pyrite systems: A mathematical model contract report for the US protection agency. EPA-R2 72 002
Zurück zum Zitat Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Appl Geochem 55:471–482 Moses CO, Herman JS (1991) Pyrite oxidation at circumneutral pH. Appl Geochem 55:471–482
Zurück zum Zitat Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571CrossRef Moses CO, Nordstrom DK, Herman JS, Mills AL (1987) Aqueous pyrite oxidation by dissolved oxygen and by ferric iron. Geochim Cosmochim Acta 51:1561–1571CrossRef
Zurück zum Zitat Murceigo A, Álvarez-Ayuso E, Pellitero E, Rodríguez MA, García-Sánchez A, Tamayo A, Rubio J, Rubio F, Rubin J (2011) Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. J Hazard Mater 186:590–601CrossRef Murceigo A, Álvarez-Ayuso E, Pellitero E, Rodríguez MA, García-Sánchez A, Tamayo A, Rubio J, Rubio F, Rubin J (2011) Study of arsenopyrite weathering products in mine wastes from abandoned tungsten and tin exploitations. J Hazard Mater 186:590–601CrossRef
Zurück zum Zitat Nesbitt HW, Jambor JL (1998) Role of mafic minerals in neutralizing ARD, demonstrated using a chemical weathering methodology. In: Cabri LJ, Vaughan DJ (eds) Short course handbook on ore and environmental mineralogy. Mineralogical Association of Canada 27, pp 403–421 Nesbitt HW, Jambor JL (1998) Role of mafic minerals in neutralizing ARD, demonstrated using a chemical weathering methodology. In: Cabri LJ, Vaughan DJ (eds) Short course handbook on ore and environmental mineralogy. Mineralogical Association of Canada 27, pp 403–421
Zurück zum Zitat Nicholson RV, Scharer JM (1994) Laboratory studies of pyrrhotite oxidation kinetics. In: Alpers CA, Blowes DW (eds) Environmental chemistry of sulfide oxidation, ACS symposium series 550. American Chemical Society, Washington, DC Nicholson RV, Scharer JM (1994) Laboratory studies of pyrrhotite oxidation kinetics. In: Alpers CA, Blowes DW (eds) Environmental chemistry of sulfide oxidation, ACS symposium series 550. American Chemical Society, Washington, DC
Zurück zum Zitat Nordstrom DK (2009) Acid rock drainage and climate change. J Geochem Explor 100:97–104CrossRef Nordstrom DK (2009) Acid rock drainage and climate change. J Geochem Explor 100:97–104CrossRef
Zurück zum Zitat Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. Rev Mineral Geochem 35:361–390 Nordstrom DK, Southam G (1997) Geomicrobiology of sulfide mineral oxidation. Rev Mineral Geochem 35:361–390
Zurück zum Zitat Olson GJ (1991) Rate of pyrite bioleaching by Thiobacillus ferrooxidans: results of an interlaboratory comparison. Appl Environ Microbiol 57:642–644 Olson GJ (1991) Rate of pyrite bioleaching by Thiobacillus ferrooxidans: results of an interlaboratory comparison. Appl Environ Microbiol 57:642–644
Zurück zum Zitat Paktunc AD (1999) Mineralogical constraints on the determination of neutralising potential and prediction of acid mine drainage. Environ Geol 39:103–112CrossRef Paktunc AD (1999) Mineralogical constraints on the determination of neutralising potential and prediction of acid mine drainage. Environ Geol 39:103–112CrossRef
Zurück zum Zitat Parbhakar-Fox A, Lottermoser BG (2015) A critical review of acid rock drainage prediction processes and practices. Min Eng 82:107–124CrossRef Parbhakar-Fox A, Lottermoser BG (2015) A critical review of acid rock drainage prediction processes and practices. Min Eng 82:107–124CrossRef
Zurück zum Zitat Parker G (1999) A critical review of acid generation resulting from sulfide oxidation: processes, treatment and control. Aust Miner Energy Environ Found Melbourne 11:1–182 Parker G (1999) A critical review of acid generation resulting from sulfide oxidation: processes, treatment and control. Aust Miner Energy Environ Found Melbourne 11:1–182
Zurück zum Zitat Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits part A: processes, techniques and health issues. Rev Econ Geol 6A:71–116 Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits part A: processes, techniques and health issues. Rev Econ Geol 6A:71–116
Zurück zum Zitat Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880CrossRef Rimstidt JD, Vaughan DJ (2003) Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism. Geochim Cosmochim Acta 67:873–880CrossRef
Zurück zum Zitat Ritchie AIM (1994) Sulfide oxidation mechanisms: controls and rate of oxygen transport. In: Jambor JL, Blowes DW (eds) The environmental geochemistry of sulfide mine wastes. Short course series, Mineralogical Association of Canada 22, pp 201–246 Ritchie AIM (1994) Sulfide oxidation mechanisms: controls and rate of oxygen transport. In: Jambor JL, Blowes DW (eds) The environmental geochemistry of sulfide mine wastes. Short course series, Mineralogical Association of Canada 22, pp 201–246
Zurück zum Zitat Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248CrossRef Rohwerder T, Gehrke T, Kinzler K, Sand W (2003) Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63:239–248CrossRef
Zurück zum Zitat Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157:49–56CrossRef Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron (III) ions and acidophilic bacteria. Res Microbiol 157:49–56CrossRef
Zurück zum Zitat Sand W, Gerke T, Hallman R, Schippers A (1995) Sulfur chemistry, biofim, and the (in)direct attack mechanism—a crictical evaluation of bacterial leaching. Appl Microbiol Biotech 43:961–966CrossRef Sand W, Gerke T, Hallman R, Schippers A (1995) Sulfur chemistry, biofim, and the (in)direct attack mechanism—a crictical evaluation of bacterial leaching. Appl Microbiol Biotech 43:961–966CrossRef
Zurück zum Zitat Savage KS, Stefan D, Lehner S (2008) Impurities and heterogeneity in pyrite: influences on electrical properties and oxidation products. Appl Geochem 23:103–120CrossRef Savage KS, Stefan D, Lehner S (2008) Impurities and heterogeneity in pyrite: influences on electrical properties and oxidation products. Appl Geochem 23:103–120CrossRef
Zurück zum Zitat Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl Environ Microbiol 65:319–321 Schippers A, Sand W (1999) Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulphur. Appl Environ Microbiol 65:319–321
Zurück zum Zitat Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for generation of acid mine drainage. Science 279:1519–1522CrossRef Schrenk MO, Edwards KJ, Goodman RM, Hamers RJ, Banfield JF (1998) Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans for generation of acid mine drainage. Science 279:1519–1522CrossRef
Zurück zum Zitat Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123CrossRef Singer PC, Stumm W (1970) Acidic mine drainage: the rate-determining step. Science 167:1121–1123CrossRef
Zurück zum Zitat Smith L, Beckie R (2003) Hydrologic and geochemical transport processes in mine. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series 31, pp 51–72 Smith L, Beckie R (2003) Hydrologic and geochemical transport processes in mine. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Mineralogical Association of Canada, Short Course Series 31, pp 51–72
Zurück zum Zitat Stanton MR, Gemery-Hill PA, Shanks WC, Taylor CD (2008) Removal of zinc and trace metal release from dissolving sphalerite at pH 2.0 to 4.0. Appl Geochem 23:136–147CrossRef Stanton MR, Gemery-Hill PA, Shanks WC, Taylor CD (2008) Removal of zinc and trace metal release from dissolving sphalerite at pH 2.0 to 4.0. Appl Geochem 23:136–147CrossRef
Zurück zum Zitat Strömberg B, Banwart SA (1999) Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size. Appl Geochem 14:1–16CrossRef Strömberg B, Banwart SA (1999) Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size. Appl Geochem 14:1–16CrossRef
Zurück zum Zitat Stumm W, Morgan JJ (1995) Aquatic chemistry, 3rd edn. Wiley, New York 1040 pp Stumm W, Morgan JJ (1995) Aquatic chemistry, 3rd edn. Wiley, New York 1040 pp
Zurück zum Zitat Tao H, Dongwei L (2014) Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy—a presentation. Biotechnol Rep 4:107–119CrossRef Tao H, Dongwei L (2014) Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy—a presentation. Biotechnol Rep 4:107–119CrossRef
Zurück zum Zitat Thomas JE, Skinner WM, Smart RC (2003) A comparison of the dissolution behaviour of troilite with other iron(II) sulfides; implications of structure. Geochim Cosmochim Acta 67:831–843CrossRef Thomas JE, Skinner WM, Smart RC (2003) A comparison of the dissolution behaviour of troilite with other iron(II) sulfides; implications of structure. Geochim Cosmochim Acta 67:831–843CrossRef
Zurück zum Zitat Thurston RS, Mandernack KW, Shanks WC (2010) Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation. Chem Geol 269:252–261CrossRef Thurston RS, Mandernack KW, Shanks WC (2010) Laboratory chalcopyrite oxidation by Acidithiobacillus ferrooxidans: Oxygen and sulfur isotope fractionation. Chem Geol 269:252–261CrossRef
Zurück zum Zitat Tyson GW, Chapman J, Hughenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43CrossRef Tyson GW, Chapman J, Hughenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43CrossRef
Zurück zum Zitat Weber PA, Thomas JE, Skinner WM, Smart RC (2004) Improved acid neutralisation capacity assessment of iron carbonates by titration and theoretical calculation. Appl Geochem 19:687–694CrossRef Weber PA, Thomas JE, Skinner WM, Smart RC (2004) Improved acid neutralisation capacity assessment of iron carbonates by titration and theoretical calculation. Appl Geochem 19:687–694CrossRef
Zurück zum Zitat Weisener CG, Weber PA (2010) Preferential oxidation of pyrite as a function of morphology and relict texture. NZ J Geol Geophys 53:22–33CrossRef Weisener CG, Weber PA (2010) Preferential oxidation of pyrite as a function of morphology and relict texture. NZ J Geol Geophys 53:22–33CrossRef
Zurück zum Zitat Weisener CG, Smart RC, Gerson AR (2003) Kinetics and mechanisms of the leaching of low Fe-sphalerite. Geochim Cosmochim Acta 67:823–830CrossRef Weisener CG, Smart RC, Gerson AR (2003) Kinetics and mechanisms of the leaching of low Fe-sphalerite. Geochim Cosmochim Acta 67:823–830CrossRef
Zurück zum Zitat Wiersma CL, Rimstidt JD (1984) Rates of reaction of pyrite and marcasite with ferric iron at pH 2. Geochim Cosmochim Acta 48:85–92CrossRef Wiersma CL, Rimstidt JD (1984) Rates of reaction of pyrite and marcasite with ferric iron at pH 2. Geochim Cosmochim Acta 48:85–92CrossRef
Zurück zum Zitat Yunmei Y, Yongxuana Z, Williams-Jones AE, Zhenmina G, Dexian L (2004) A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl Geochem 19:435–444CrossRef Yunmei Y, Yongxuana Z, Williams-Jones AE, Zhenmina G, Dexian L (2004) A kinetic study of the oxidation of arsenopyrite in acidic solutions: implications for the environment. Appl Geochem 19:435–444CrossRef
Metadaten
Titel
Principles of Sulfide Oxidation and Acid Rock Drainage
verfasst von
Anita Parbhakar-Fox
Bernd Lottermoser
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-42731-7_2