Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-8/2019

25.06.2019 | ORIGINAL ARTICLE

Process and resource selection methodology in design for additive manufacturing

verfasst von: Shervin Kadkhoda-Ahmadi, Alaa Hassan, Elnaz Asadollahi-Yazdi

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper deals with an integrated design approach for additive manufacturing (AM), as a design for additive manufacturing (DfAM) approach. This DfAM approach focuses on two important activities of manufacturability analysis, as well as material and process selection in the concept of concurrent engineering and integrated design approach (CE/ID). It could be considered as a guideline for the researchers in the early phase of the product development process. For this purpose, a novel process and resource selection problem for AM is formalized as an additive manufacturing process and resource selection problem (AMPRSP). This problem is defined to investigate simultaneously the manufacturability, and process and resource selection issues for AM. A multi-criteria evaluation system (MCES) is proposed to solve this problem by evaluating the manufacturability of the product, and selecting the AM resources. Firstly, the AM process, machine, and material are explored and selected regarding technical and economic evaluation criteria. Then, the most appropriate alternative for fabrication with AM is selected by considering the sub-criteria including build time, accuracy performance, and cost. To solve this multi-criteria problem, an analytic hierarchy process (AHP) method is employed. Overall, this evaluation system is a step-by-step methodology that includes screening, comparative assessment, and a ranking process to select the most suitable alternative for AMPRSP. Finally, the proposed approach is illustrated by an industrial case study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Asadollahi-Yazdi E, Gardan J, Lafon P (2018a) Toward integrated design of additive manufacturing through a process development model and multi-objective optimization. Int J Adv Manuf Technol 96(9-12):4145–4164 Asadollahi-Yazdi E, Gardan J, Lafon P (2018a) Toward integrated design of additive manufacturing through a process development model and multi-objective optimization. Int J Adv Manuf Technol 96(9-12):4145–4164
3.
Zurück zum Zitat Daniel E (1988) Whitney. Manufacturing by design. Harv Bus Rev 66(4):83–91 Daniel E (1988) Whitney. Manufacturing by design. Harv Bus Rev 66(4):83–91
4.
Zurück zum Zitat Ahuja B, Karg M, Schmidt M (2015) Additive manufacturing in production: challenges and opportunities. In: Laser 3d manufacturing II, volume 9353, page 935304. International Society for Optics and Photonics Ahuja B, Karg M, Schmidt M (2015) Additive manufacturing in production: challenges and opportunities. In: Laser 3d manufacturing II, volume 9353, page 935304. International Society for Optics and Photonics
5.
Zurück zum Zitat Asadollahi-Yazdi E, Gardan J, Lafon P (2017) Integrated design for additive manufacturing based on skin-skeleton approach. Procedia CIRP 60:217–222CrossRef Asadollahi-Yazdi E, Gardan J, Lafon P (2017) Integrated design for additive manufacturing based on skin-skeleton approach. Procedia CIRP 60:217–222CrossRef
9.
Zurück zum Zitat Van Vliet JW, Van Luttervelt CA, Kals HJJ (1999) State-of-the-art report on design for manufacturing. In: Proceedings of ASME design engineering technical conferences, Las Vegas, pp 12–15 Van Vliet JW, Van Luttervelt CA, Kals HJJ (1999) State-of-the-art report on design for manufacturing. In: Proceedings of ASME design engineering technical conferences, Las Vegas, pp 12–15
10.
Zurück zum Zitat Asadollahi-Yazdi E, Gardan J, Lafon P (2016) Integrated design in additive manufacturing based on design for manufacturing. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng 10(6):1137–1144 Asadollahi-Yazdi E, Gardan J, Lafon P (2016) Integrated design in additive manufacturing based on design for manufacturing. World Acad Sci Eng Technol Int J Mech Aerosp Ind Mechatron Manuf Eng 10(6):1137–1144
20.
Zurück zum Zitat Salonitis K, Al Zarban S (2015) Redesign optimization for manufacturing using additive layer techniques. Procedia CIRP 36:193–198CrossRef Salonitis K, Al Zarban S (2015) Redesign optimization for manufacturing using additive layer techniques. Procedia CIRP 36:193–198CrossRef
21.
Zurück zum Zitat Cantrell J, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C et al (2017) Experimental characterization of the mechanical properties of 3d printed abs and polycarbonate parts. In: Advancement of optical methods in experimental mechanics. Springer, vol 3, pp 89–105 Cantrell J, Rohde S, Damiani D, Gurnani R, DiSandro L, Anton J, Young A, Jerez A, Steinbach D, Kroese C et al (2017) Experimental characterization of the mechanical properties of 3d printed abs and polycarbonate parts. In: Advancement of optical methods in experimental mechanics. Springer, vol 3, pp 89–105
22.
Zurück zum Zitat Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-m30. Comput Mater Sci 79:506–518CrossRef Croccolo D, De Agostinis M, Olmi G (2013) Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-m30. Comput Mater Sci 79:506–518CrossRef
23.
Zurück zum Zitat Asadollahi-Yazdi E, Gardan J, Lafon P (2018b) Multi-objective optimization of additive manufacturing process. IFAC-PapersOnLine 51(11):152–15 Asadollahi-Yazdi E, Gardan J, Lafon P (2018b) Multi-objective optimization of additive manufacturing process. IFAC-PapersOnLine 51(11):152–15
24.
Zurück zum Zitat Zhao B, Gain AK, Ding W, Zhang L, Li X, Fu Y (2018) A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int J Adv Manuf Technol 95(5-8):2641–2659CrossRef Zhao B, Gain AK, Ding W, Zhang L, Li X, Fu Y (2018) A review on metallic porous materials: pore formation, mechanical properties, and their applications. Int J Adv Manuf Technol 95(5-8):2641–2659CrossRef
25.
Zurück zum Zitat Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4v components: state of the art. Mater Res Express 6(1):012002CrossRef Fotovvati B, Namdari N, Dehghanghadikolaei A (2018) Fatigue performance of selective laser melted Ti6Al4v components: state of the art. Mater Res Express 6(1):012002CrossRef
26.
Zurück zum Zitat Alafaghani AQA, Ablat MA (2017) Design consideration for additive manufacturing: fused deposition modelling Alafaghani AQA, Ablat MA (2017) Design consideration for additive manufacturing: fused deposition modelling
27.
Zurück zum Zitat Ranjan R, Samant R, Anand S (2017) Integration of design for manufacturing methods with topology optimization in additive manufacturing. J Manuf Sci Eng 139(6):061007CrossRef Ranjan R, Samant R, Anand S (2017) Integration of design for manufacturing methods with topology optimization in additive manufacturing. J Manuf Sci Eng 139(6):061007CrossRef
29.
Zurück zum Zitat Walton D, Moztarzadeh H (2017) Design and development of an additive manufactured component by topology optimisation. Procedia CIRP 60:205–210CrossRef Walton D, Moztarzadeh H (2017) Design and development of an additive manufactured component by topology optimisation. Procedia CIRP 60:205–210CrossRef
30.
Zurück zum Zitat Primo T, Calabrese M, Del Prete A, Anglani A (2017) Additive manufacturing integration with topology optimization methodology for innovative product design. Int J Adv Manuf Technol 93(1-4):467–479CrossRef Primo T, Calabrese M, Del Prete A, Anglani A (2017) Additive manufacturing integration with topology optimization methodology for innovative product design. Int J Adv Manuf Technol 93(1-4):467–479CrossRef
31.
Zurück zum Zitat Salonitis K (2016) Design for additive manufacturing based on the axiomatic design method. Int J Adv Manuf Technol 87(1-4):989–996CrossRef Salonitis K (2016) Design for additive manufacturing based on the axiomatic design method. Int J Adv Manuf Technol 87(1-4):989–996CrossRef
32.
Zurück zum Zitat Langelaar M (2017) An additive manufacturing filter for topology optimization of print-ready designs. Struct Multidiscip Optim 55(3):871–883CrossRefMathSciNet Langelaar M (2017) An additive manufacturing filter for topology optimization of print-ready designs. Struct Multidiscip Optim 55(3):871–883CrossRefMathSciNet
33.
Zurück zum Zitat Panesar A, Ashcroft I, Brackett D, Wildman R, Hague R (2017) Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems. Add Manuf 16:98–106 Panesar A, Ashcroft I, Brackett D, Wildman R, Hague R (2017) Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems. Add Manuf 16:98–106
34.
Zurück zum Zitat Xu G, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63CrossRefMathSciNet Xu G, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput Methods Appl Mech Eng 323:27–63CrossRefMathSciNet
49.
Zurück zum Zitat Khaleeq uz Zaman U, Siadat A, Rivette M, Baqai AA, Qiao L (2017) Integrated product-process design to suggest appropriate manufacturing technology: a review. Int J Adv Manuf Technol 91(1-4):1409–1430CrossRef Khaleeq uz Zaman U, Siadat A, Rivette M, Baqai AA, Qiao L (2017) Integrated product-process design to suggest appropriate manufacturing technology: a review. Int J Adv Manuf Technol 91(1-4):1409–1430CrossRef
50.
Zurück zum Zitat Uz Z, Khaleeq U, Rivette M, Siadat A, Baqai AA (2018) Integrated design-oriented framework for resource selection in additive manufacturing Uz Z, Khaleeq U, Rivette M, Siadat A, Baqai AA (2018) Integrated design-oriented framework for resource selection in additive manufacturing
51.
Zurück zum Zitat Wright IC (1998) Design methods in engineering and product design. McGraw-Hill Wright IC (1998) Design methods in engineering and product design. McGraw-Hill
52.
Zurück zum Zitat Lieneke T, Adam GAO, Leuders S, Knoop F, Josupeit S, Delfs P, Funke N, Zimmer D (2015) Systematical determination of tolerances for additive manufacturing by measuring linear dimensions. In: 26Th annual international solid freeform fabrication symposium, Austin Lieneke T, Adam GAO, Leuders S, Knoop F, Josupeit S, Delfs P, Funke N, Zimmer D (2015) Systematical determination of tolerances for additive manufacturing by measuring linear dimensions. In: 26Th annual international solid freeform fabrication symposium, Austin
53.
Zurück zum Zitat Niaki MK, Nonino F (2018) Selection and implementation of additive manufacturing. In: Niaki MK, Nonino F (eds) The management of additive manufacturing: enhancing business value, Springer Series in Advanced Manufacturing. ISBN 978-3-319-56309-1. https://doi.org/10.1007/978-3-319-56309-1_7. Springer International Publishing, Cham, pp 193–220 Niaki MK, Nonino F (2018) Selection and implementation of additive manufacturing. In: Niaki MK, Nonino F (eds) The management of additive manufacturing: enhancing business value, Springer Series in Advanced Manufacturing. ISBN 978-3-319-56309-1. https://​doi.​org/​10.​1007/​978-3-319-56309-1_​7. Springer International Publishing, Cham, pp 193–220
Metadaten
Titel
Process and resource selection methodology in design for additive manufacturing
verfasst von
Shervin Kadkhoda-Ahmadi
Alaa Hassan
Elnaz Asadollahi-Yazdi
Publikationsdatum
25.06.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-03991-w

Weitere Artikel der Ausgabe 5-8/2019

The International Journal of Advanced Manufacturing Technology 5-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.