Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 7/2014

01.10.2014 | Original Paper

Process development and catalyst testing under industrial conditions

verfasst von: Roland M. Günther, Jan C. Schöneberger, Holger Thielert, Günter Wozny

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of new processes or modifications of existing industrial processes often leads to acceptance issues, because not all real conditions can be reproduced in non industrial facilities. The investigations under ideal conditions are mostly indispensable for scientific tasks but lead to risks resulting from transferring university results to industry. In this article, a solution to this problem is presented combining the experimental work in university facilities with the needs of industrial plant employers. A tiered approach using preliminary scientific experiments without impurities from lab to miniplant scale followed by a bypass operation with the real industrial plant combines the advantages of the both sides. In line with this approach, intensive theoretical and experimental studies were carried out in the lab of the chair “Process Dynamics and Operation” of the “Technische Universtität Berlin” for the development of a new emission-free sulfuric acid process. In a further step, a mobile, modular, and fully automated experimental set-up is built and shipped to the industrial partner, where it is operated in bypass to the industrial sulfuric acid plant. Main objectives are to obtain important insights regarding long-term stability and interaction of secondary components. The application of this approach in a real case study shows that a very fast and cost effective process development can be realized with the minimum on risk. In this work, the very successful development of the emission-free sulfuric acid process is presented. Deep information of the reaction mechanism of the sulfur dioxide hydrogenation and side reactions was determined. The results presented in this article allow the development of optimal operational strategies for the whole sulfuric acid plant, which give a completely new perspective to the established process.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bunimovich GA, Vernikovskaya NV, Strots VO, Balzhinimaev BS, Matros YSH (1995) SO2 oxidation in a reverse-flow reactor: influence of a vanadium catalyst dynamic properties. Chem Eng Sci 50(4):565–580CrossRef Bunimovich GA, Vernikovskaya NV, Strots VO, Balzhinimaev BS, Matros YSH (1995) SO2 oxidation in a reverse-flow reactor: influence of a vanadium catalyst dynamic properties. Chem Eng Sci 50(4):565–580CrossRef
Zurück zum Zitat Dittmeyer R, Keim W, Kreysa G, Oberholz A (2006) Winnacker/Küchler: chemical engineering processes and products, number 2. Wiley-VCH, Weinheim (in German) Dittmeyer R, Keim W, Kreysa G, Oberholz A (2006) Winnacker/Küchler: chemical engineering processes and products, number 2. Wiley-VCH, Weinheim (in German)
Zurück zum Zitat Elsner MP, Menge M, Müller C, Agar DW (2003) The Claus process: teaching an old dog new tricks. Catal Today 79–80:487–494CrossRef Elsner MP, Menge M, Müller C, Agar DW (2003) The Claus process: teaching an old dog new tricks. Catal Today 79–80:487–494CrossRef
Zurück zum Zitat FDA (2011) Guidance for industry—process validation: general principles and practices. U.S. Department of Health and Human Services FDA (2011) Guidance for industry—process validation: general principles and practices. U.S. Department of Health and Human Services
Zurück zum Zitat Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63:4846–4872CrossRef Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision: state of the art. Chem Eng Sci 63:4846–4872CrossRef
Zurück zum Zitat George ZM (1973) Kinetics of cobalt–molybdate-catalyzed reactions of SO2 with H2S and COS and the hydrolysis of COS. J Catal 32:261–271CrossRef George ZM (1973) Kinetics of cobalt–molybdate-catalyzed reactions of SO2 with H2S and COS and the hydrolysis of COS. J Catal 32:261–271CrossRef
Zurück zum Zitat Günther RM, Schöneberger JC, Arellano-Garcia H, Thielert H, Wozny G (2012) Design and modeling of a new periodical-steady state process for the oxidation of sulfur dioxide in the context of an emission free sulfuric acid plant. Comput Aided Chem Eng 31:1677–1681CrossRef Günther RM, Schöneberger JC, Arellano-Garcia H, Thielert H, Wozny G (2012) Design and modeling of a new periodical-steady state process for the oxidation of sulfur dioxide in the context of an emission free sulfuric acid plant. Comput Aided Chem Eng 31:1677–1681CrossRef
Zurück zum Zitat Günther RM, Schöneberger JC, Arellano-Garcia H, Thielert H, Wozny G (2013) Emission free sulfur recovery process development with modular mini-plants in industrial plant bypass. Chem Eng Trans 35:763–768 Günther RM, Schöneberger JC, Arellano-Garcia H, Thielert H, Wozny G (2013) Emission free sulfur recovery process development with modular mini-plants in industrial plant bypass. Chem Eng Trans 35:763–768
Zurück zum Zitat Hady L, Wozny G (2009) Know-how and quality assurance using a web based reuse-atlas. Chem Eng Trans 18:761–766 Hady L, Wozny G (2009) Know-how and quality assurance using a web based reuse-atlas. Chem Eng Trans 18:761–766
Zurück zum Zitat Hilaire S, Wanga X, Luoa T, Gorte RJ, Wagner J (2001) A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl Catal A 215:271–278CrossRef Hilaire S, Wanga X, Luoa T, Gorte RJ, Wagner J (2001) A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl Catal A 215:271–278CrossRef
Zurück zum Zitat Jüngst E, Nehb W (2008) Hydrogen sulfide to sulfur (Claus process). Handbook of heterogeneous catalysis, vol. 12. pp. 2609–2623 Jüngst E, Nehb W (2008) Hydrogen sulfide to sulfur (Claus process). Handbook of heterogeneous catalysis, vol. 12. pp. 2609–2623
Zurück zum Zitat Karakaya C, Otterstätter R, Maier L, Deutschmann O (2014) Kinetics of the water-gas shift reaction over Rh/Al2O3 catalysts. Appl Catal A 470:31–44CrossRef Karakaya C, Otterstätter R, Maier L, Deutschmann O (2014) Kinetics of the water-gas shift reaction over Rh/Al2O3 catalysts. Appl Catal A 470:31–44CrossRef
Zurück zum Zitat Kuntsche S, Manenti F, Buzzi-Ferraris G, Wozny G (2011) Modelling in the documentation level MOSAIC and numerical libraries. Chem Eng Trans 24:343–348 Kuntsche S, Manenti F, Buzzi-Ferraris G, Wozny G (2011) Modelling in the documentation level MOSAIC and numerical libraries. Chem Eng Trans 24:343–348
Zurück zum Zitat Li K-T, Hung YC (2003) Hydrogenation of sulfur dioxide to hydrogen sulphide over Fe/γ-Al2O3 catalysts. Appl Catal B 40(1):13–20CrossRef Li K-T, Hung YC (2003) Hydrogenation of sulfur dioxide to hydrogen sulphide over Fe/γ-Al2O3 catalysts. Appl Catal B 40(1):13–20CrossRef
Zurück zum Zitat Moré JJ (1977) The Levenberg–Marquardt Algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis. Lecture notes in mathematics, vol 630. Springer, Berlin, pp 105–116 Moré JJ (1977) The Levenberg–Marquardt Algorithm: implementation and theory. In: Watson GA (ed) Numerical analysis. Lecture notes in mathematics, vol 630. Springer, Berlin, pp 105–116
Zurück zum Zitat Müller MT, Arellano-Garcia H, Thielert H, Wozny G (2010a) On-site miniplant technology: improving the absorption process of removing aromatic hydrocarbons by using biodiesel as scrubbing fluid. In: 2010 AIChE annual meeting conference proceedings 131d, Salt Lake City, UT, USA, 7–12 Nov Müller MT, Arellano-Garcia H, Thielert H, Wozny G (2010a) On-site miniplant technology: improving the absorption process of removing aromatic hydrocarbons by using biodiesel as scrubbing fluid. In: 2010 AIChE annual meeting conference proceedings 131d, Salt Lake City, UT, USA, 7–12 Nov
Zurück zum Zitat Müller MT, Arellano-Garcia H, Repke JU, Wozny G (2010) Experimental investigations on biodiesel as an alternative absorbent for the recovery of aromatic hydrocarbons under industrial conditions. In: Distillation & absorption, conference proceedings, Eindhoven, Netherlands Müller MT, Arellano-Garcia H, Repke JU, Wozny G (2010) Experimental investigations on biodiesel as an alternative absorbent for the recovery of aromatic hydrocarbons under industrial conditions. In: Distillation & absorption, conference proceedings, Eindhoven, Netherlands
Zurück zum Zitat Paik S, Chung J (1996) Selective hydrogenation of SO2 to elemental sulfur over transition metal sulphides supported on Al2O3. Appl Catal B 8:267–279CrossRef Paik S, Chung J (1996) Selective hydrogenation of SO2 to elemental sulfur over transition metal sulphides supported on Al2O3. Appl Catal B 8:267–279CrossRef
Zurück zum Zitat Robbins LA (1979) The miniplant concept. Chem Eng Process 9:45–48 Robbins LA (1979) The miniplant concept. Chem Eng Process 9:45–48
Zurück zum Zitat Schöneberger JC (2010) Development and analysis of catalytic waste gas treatment processes using the example of the emission free sulfuric acid plant. Shaker, Aachen (in German) Schöneberger JC (2010) Development and analysis of catalytic waste gas treatment processes using the example of the emission free sulfuric acid plant. Shaker, Aachen (in German)
Zurück zum Zitat Schöneberger JC, Arellano-Garcia H, Wozny G, Körkel S, Thielert H (2009) Model-based experimental analysis of a fixed-bed reactor for catalytic SO2 oxidation. Ind Eng Chem Res 48(11):5165–5176CrossRef Schöneberger JC, Arellano-Garcia H, Wozny G, Körkel S, Thielert H (2009) Model-based experimental analysis of a fixed-bed reactor for catalytic SO2 oxidation. Ind Eng Chem Res 48(11):5165–5176CrossRef
Zurück zum Zitat Schöneberger JC, Arellano-Garcia H, Wozny G (2010) Local optima in model-based optimal experimental design. Ind Eng Chem Res 49:10059–10073CrossRef Schöneberger JC, Arellano-Garcia H, Wozny G (2010) Local optima in model-based optimal experimental design. Ind Eng Chem Res 49:10059–10073CrossRef
Zurück zum Zitat Sekhavatjou MS, Hosseini Alhashemi A, Karbassi AR, Daemolzekr E (2011) Minimization of air pollutants emissions by process improvement of catalytic reforming unit in an Iranian old refinery. Clean Technol Environ Policy 13(5):743–749CrossRef Sekhavatjou MS, Hosseini Alhashemi A, Karbassi AR, Daemolzekr E (2011) Minimization of air pollutants emissions by process improvement of catalytic reforming unit in an Iranian old refinery. Clean Technol Environ Policy 13(5):743–749CrossRef
Zurück zum Zitat VandenBussche KM, Froment GF (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 161:1–10CrossRef VandenBussche KM, Froment GF (1996) A steady-state kinetic model for methanol synthesis and the water gas shift reaction on a commercial Cu/ZnO/Al2O3 catalyst. J Catal 161:1–10CrossRef
Zurück zum Zitat Wiesenberger H, Kircher J (2001) Stand der Technik in der Schwefelsäureerzeugung im Hinblick auf die IPPC-Richtlinie. Federal Environment Agency Ltd., Austria Wiesenberger H, Kircher J (2001) Stand der Technik in der Schwefelsäureerzeugung im Hinblick auf die IPPC-Richtlinie. Federal Environment Agency Ltd., Austria
Zurück zum Zitat Wörz O (1995) Process development via a miniplant. Chem Eng Process 34:261–268CrossRef Wörz O (1995) Process development via a miniplant. Chem Eng Process 34:261–268CrossRef
Metadaten
Titel
Process development and catalyst testing under industrial conditions
verfasst von
Roland M. Günther
Jan C. Schöneberger
Holger Thielert
Günter Wozny
Publikationsdatum
01.10.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 7/2014
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-014-0789-5

Weitere Artikel der Ausgabe 7/2014

Clean Technologies and Environmental Policy 7/2014 Zur Ausgabe