Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

08.01.2019 | Original Article | Ausgabe 9/2019

Neural Computing and Applications 9/2019

Process modeling and optimization of sorrel biodiesel synthesis using barium hydroxide as a base heterogeneous catalyst: appraisal of response surface methodology, neural network and neuro-fuzzy system

Zeitschrift:
Neural Computing and Applications > Ausgabe 9/2019
Autoren:
Niyi B. Ishola, Adebisi A. Okeleye, Ajiboye S. Osunleke, Eriola Betiku
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1007/​s00521-018-03989-7) contains supplementary material, which is available to authorized users.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

In this study, three different modeling tools, viz. response surface methodology (RSM), artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS), were used to model the process of conversion of sorrel (Hibiscus sabdariffa) oil to H. sabdariffa methyl esters (HSME). The high free fatty acid (13.47%) of the sorrel oil was reduced to 0.62 ± 0.05% using methanol/oil molar ratio of 40:1, catalyst (ferric sulfate) weight of 15 wt%, reaction time of 3 h and temperature of 65 °C, followed by transesterification step. The developed models for the transesterification process were all found to be reliable and accurate when subjected to different statistical tests. ANFIS model [coefficient of determination (R2) = 0.9944] was better than ANN model (R2 = 0.9875), while RSM model (R2 = 0.9789) was the least accurate. The results of process optimization for the transesterification showed that genetic algorithm (GA) performed better than RSM. The highest HSME yield of 99.71 wt% could be obtained under optimal condition of methanol/oil molar ratio 8:1, catalyst weight 1.23 wt% and reaction time 43 min while keeping temperature at 65 °C using ANFIS model which has been optimized with GA. The sensitivity analyses showed that time was the most important input variable, followed by methanol/oil molar ratio and lastly catalyst weight. Quality characterization of the HSME showed that it could serve as an alternative to petro-diesel.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Zusatzmaterial
Nur für berechtigte Nutzer zugänglich
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 9/2019

Neural Computing and Applications 9/2019 Zur Ausgabe

Brain- Inspired computing and Machine learning for Brain Health

A novel subgraph querying method based on paths and spectra

Emergence in Human-like Intelligence towards Cyber-Physical Systems

Iterative learning control for linear generalized distributed parameter system

Premium Partner

    Bildnachweise