Skip to main content
Erschienen in: Journal of Materials Science 1/2016

24.09.2015 | 50th Anniversary

Processing-structure–property relationships of novel fibrous filters produced by a melt-process

verfasst von: Jia Wang, Ravi Ayyar, Andrew Olah, Eric Baer

Erschienen in: Journal of Materials Science | Ausgabe 1/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Fibrous filters were produced using a novel melt-based co-extrusion and two-dimensional multiplication technology combined with a delamination technique using high-pressure water jets. The fibrous filters produced comprising continuous and rectangular polypropylene (PP)/polyamide 6 (PA6) micro/nano-fibers have structural integrity and uniform fiber distribution. The orientation procedure greatly improves the PP/PA6 crystal orientation, decreases the fiber sizes, and enhances their mechanical performance as filters. These filters have large surface area, micron-sized pores, and high porosity (~90 %), which are desirable for microfiltration applications. Structural and property analysis was performed on the PP/PA6 fibrous filters produced from varying number of plies of the composite tapes with different draw ratios and fiber width-to-thickness ratios. It was found that increasing the tape draw ratio improves the surface area and porosity of the filters, and decreases its pore size. Using more plies generates decreased filter pore size and unaffected porosity. Filters comprising fibers with higher width-to-thickness ratio have higher surface area, smaller pore size, and unchanged porosity. This melt-based, versatile technology is applicable to any melt-processable polymers to produce fibrous filters having tunable properties for various filtration applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262CrossRef Ulbricht M (2006) Advanced functional polymer membranes. Polymer 47(7):2217–2262CrossRef
2.
Zurück zum Zitat Joseph DG (1980) Making porous membranes and the membrane products. US4203847A Joseph DG (1980) Making porous membranes and the membrane products. US4203847A
3.
Zurück zum Zitat Lopatin G, Yen LY, Rogers RR (1989) Microporous membranes from polypropylene. US4874567 A Lopatin G, Yen LY, Rogers RR (1989) Microporous membranes from polypropylene. US4874567 A
4.
Zurück zum Zitat Baker RW (2000) Membrane technology and applications. McGraw-Hill, New York Baker RW (2000) Membrane technology and applications. McGraw-Hill, New York
5.
Zurück zum Zitat Yang M, Hou J (2012) Membranes in lithium ion batteries. Membranes 2(3):367–383CrossRef Yang M, Hou J (2012) Membranes in lithium ion batteries. Membranes 2(3):367–383CrossRef
8.
Zurück zum Zitat Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P (2002) Polymeric nanofibers in air filtration applications. In: The fifteenth annual technical conference & expo of the American Filtration & Separations Society, Galveston, 9–12 April 2002 Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P (2002) Polymeric nanofibers in air filtration applications. In: The fifteenth annual technical conference & expo of the American Filtration & Separations Society, Galveston, 9–12 April 2002
9.
Zurück zum Zitat Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7):2434–2441CrossRef Yoon K, Kim K, Wang X, Fang D, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7):2434–2441CrossRef
10.
Zurück zum Zitat Aussawasathien D, Teerawattananon C, Vongachariya A (2008) Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters. J Membr Sci 315:11–19CrossRef Aussawasathien D, Teerawattananon C, Vongachariya A (2008) Separation of micron to sub-micron particles from water: electrospun nylon-6 nanofibrous membranes as pre-filters. J Membr Sci 315:11–19CrossRef
11.
Zurück zum Zitat Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412CrossRef Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412CrossRef
12.
Zurück zum Zitat Park H-S, Park Y (2005) Filtration properties of electrospun ultrafine fiber webs. Korean J Chem Eng 22(1):165–172CrossRef Park H-S, Park Y (2005) Filtration properties of electrospun ultrafine fiber webs. Korean J Chem Eng 22(1):165–172CrossRef
13.
Zurück zum Zitat Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45(1):190–195CrossRef Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. AIChE J 45(1):190–195CrossRef
14.
Zurück zum Zitat Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586CrossRef Gopal R, Kaur S, Ma Z, Chan C, Ramakrishna S, Matsuura T (2006) Electrospun nanofibrous filtration membrane. J Membr Sci 281:581–586CrossRef
15.
Zurück zum Zitat Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219CrossRef Gopal R, Kaur S, Feng CY, Chan C, Ramakrishna S, Tabe S, Matsuura T (2007) Electrospun nanofibrous polysulfone membranes as pre-filters: particulate removal. J Membr Sci 289:210–219CrossRef
16.
Zurück zum Zitat Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316CrossRef Ellison CJ, Phatak A, Giles DW, Macosko CW, Bates FS (2007) Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer 48(11):3306–3316CrossRef
18.
Zurück zum Zitat Okamoto M, Watanabe K, Nukushina Y, Aizawa T (1982) Synthetic filaments and the like. US4350006A Okamoto M, Watanabe K, Nukushina Y, Aizawa T (1982) Synthetic filaments and the like. US4350006A
19.
Zurück zum Zitat Okamoto M (1983) Multi-component composite filament. US4381335A Okamoto M (1983) Multi-component composite filament. US4381335A
20.
Zurück zum Zitat Matsui M, Tokura S, Utsuhara Y, Yamabe M (1972) Apparatus for producing multilayer filament. US3672802A Matsui M, Tokura S, Utsuhara Y, Yamabe M (1972) Apparatus for producing multilayer filament. US3672802A
21.
Zurück zum Zitat Matsui M, Tokura S, Yamabe M (1976) Mixed filaments. US3968307A Matsui M, Tokura S, Yamabe M (1976) Mixed filaments. US3968307A
22.
Zurück zum Zitat Dasdemir M, Maze B, Anantharamaiah N, Pourdeyhimi B (2012) Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers. J Mater Sci 47:5955–5969. doi:10.1007/s10853-012-6499-7 CrossRef Dasdemir M, Maze B, Anantharamaiah N, Pourdeyhimi B (2012) Influence of polymer type, composition, and interface on the structural and mechanical properties of core/sheath type bicomponent nonwoven fibers. J Mater Sci 47:5955–5969. doi:10.​1007/​s10853-012-6499-7 CrossRef
23.
Zurück zum Zitat Cheng K, Hsu T, Kao L (2011) A microscopic view of chemically activated amorphous carbon nanofibers prepared from core/sheath melt-spinning of phenol formaldehyde-based polymer blends. J Mater Sci 46:3914–3922. doi:10.1007/s10853-011-5315-0 CrossRef Cheng K, Hsu T, Kao L (2011) A microscopic view of chemically activated amorphous carbon nanofibers prepared from core/sheath melt-spinning of phenol formaldehyde-based polymer blends. J Mater Sci 46:3914–3922. doi:10.​1007/​s10853-011-5315-0 CrossRef
24.
Zurück zum Zitat Kiriyama T; Norota S, Segawa Y, Emi S, Imoto T, Azumi T (1983) Novel assembly of composite fibers. US4414276 Kiriyama T; Norota S, Segawa Y, Emi S, Imoto T, Azumi T (1983) Novel assembly of composite fibers. US4414276
25.
Zurück zum Zitat Zhang D (2014) Advances in filament yarn spinning of textiles and polymers. Woodhead Publishing, Cambridge Zhang D (2014) Advances in filament yarn spinning of textiles and polymers. Woodhead Publishing, Cambridge
27.
Zurück zum Zitat Breen AL (1965) Spinneret assembly. US3188689A Breen AL (1965) Spinneret assembly. US3188689A
28.
Zurück zum Zitat Hudnall TW (1971) Spinneret assembly for multicomponent fibers. US3601846A Hudnall TW (1971) Spinneret assembly for multicomponent fibers. US3601846A
29.
Zurück zum Zitat Hagen GA (1993) Process of making multicomponent trilobal fiber. US5244614A Hagen GA (1993) Process of making multicomponent trilobal fiber. US5244614A
30.
Zurück zum Zitat Kent DR, Hoyt MB, Helms CF (2000) Method of making multiple domain fibers. US 6010654A Kent DR, Hoyt MB, Helms CF (2000) Method of making multiple domain fibers. US 6010654A
31.
Zurück zum Zitat Pellegrin MT, Gavin PM, Ault PL, Loftus JE, Haines RM, Morris V (1997) Bicomponent polymer fibers made by rotary process. US5702658A Pellegrin MT, Gavin PM, Ault PL, Loftus JE, Haines RM, Morris V (1997) Bicomponent polymer fibers made by rotary process. US5702658A
32.
Zurück zum Zitat Tanner D (1968) Splittable composite filament. US3418200A Tanner D (1968) Splittable composite filament. US3418200A
33.
Zurück zum Zitat Moriki Y, Ogasawara M (1984) Spinneret for production of composite filaments. US4445833A Moriki Y, Ogasawara M (1984) Spinneret for production of composite filaments. US4445833A
34.
Zurück zum Zitat Kamiyama M, Numata M (2009) Islands-in-sea type composite fiber and process for producing the same. US7622188B2 Kamiyama M, Numata M (2009) Islands-in-sea type composite fiber and process for producing the same. US7622188B2
35.
Zurück zum Zitat Fedorova NV, Pourdeyhimi B (2007) High strength nylon micro- and nanofiber based nonwovens via spunbonding. J Appl Polym Sci 104:3434–3442CrossRef Fedorova NV, Pourdeyhimi B (2007) High strength nylon micro- and nanofiber based nonwovens via spunbonding. J Appl Polym Sci 104:3434–3442CrossRef
36.
Zurück zum Zitat Pourdeyhimi B, Fedorova NV, Sharp SR (2013) High strength, durable micro and nano-fiber fabrics produced by fibrillating bicomponent islands in the sea fibers. US8420556B2 Pourdeyhimi B, Fedorova NV, Sharp SR (2013) High strength, durable micro and nano-fiber fabrics produced by fibrillating bicomponent islands in the sea fibers. US8420556B2
37.
Zurück zum Zitat Anantharamaiah N, Verenich S, Pourdeyhimi B (2008) Durable nonwoven fabrics via fracturing bicomponent islands-in-the-sea filaments. J Eng Fibers Fabr 3(3):1–9 Anantharamaiah N, Verenich S, Pourdeyhimi B (2008) Durable nonwoven fabrics via fracturing bicomponent islands-in-the-sea filaments. J Eng Fibers Fabr 3(3):1–9
38.
Zurück zum Zitat Wang J, Langhe D, Ponting M, Wnek GE, Korley LTJ, Baer E (2014) Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer 55(2):673–685CrossRef Wang J, Langhe D, Ponting M, Wnek GE, Korley LTJ, Baer E (2014) Manufacturing of polymer continuous nanofibers using a novel co-extrusion and multiplication technique. Polymer 55(2):673–685CrossRef
39.
Zurück zum Zitat Baer E, Langhe D, Wang J (2013) Production of micro- and nano-fibers by continuous microlayer coextrusion. WO2013155519A1 Baer E, Langhe D, Wang J (2013) Production of micro- and nano-fibers by continuous microlayer coextrusion. WO2013155519A1
40.
Zurück zum Zitat Salem DR, Moore RAF, Weigmann HD (1987) Macromolecular order in spin-oriented nylon 6 (polycaproamide) fibers. J Polym Sci Part B 25(3):567–589CrossRef Salem DR, Moore RAF, Weigmann HD (1987) Macromolecular order in spin-oriented nylon 6 (polycaproamide) fibers. J Polym Sci Part B 25(3):567–589CrossRef
41.
Zurück zum Zitat Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S (2014) Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci 49:6143–6159. doi:10.1007/s10853-014-8308-y CrossRef Kaur S, Sundarrajan S, Rana D, Sridhar R, Gopal R, Matsuura T, Ramakrishna S (2014) Review: the characterization of electrospun nanofibrous liquid filtration membranes. J Mater Sci 49:6143–6159. doi:10.​1007/​s10853-014-8308-y CrossRef
43.
Zurück zum Zitat Huang M-R, Li X-G, Fang B-R (1995) β-nucleators and β-crystalline form of isotactic polypropylene. J Appl Polym Sci 56(10):1323–1337CrossRef Huang M-R, Li X-G, Fang B-R (1995) β-nucleators and β-crystalline form of isotactic polypropylene. J Appl Polym Sci 56(10):1323–1337CrossRef
44.
Zurück zum Zitat Ran S, Zong X, Fang D, Hsiao BS, Chu B, Phillips RA (2001) Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in situ synchrotron SAXS/WAXD. Macromolecules 34(8):2569–2578CrossRef Ran S, Zong X, Fang D, Hsiao BS, Chu B, Phillips RA (2001) Structural and morphological studies of isotactic polypropylene fibers during heat/draw deformation by in situ synchrotron SAXS/WAXD. Macromolecules 34(8):2569–2578CrossRef
45.
Zurück zum Zitat Heuvel HM, Huisman R (1981) Five-line model for the description of radial X-ray diffractometer scans of nylon 6 yarns. J Polym Sci 19(1):121–134 Heuvel HM, Huisman R (1981) Five-line model for the description of radial X-ray diffractometer scans of nylon 6 yarns. J Polym Sci 19(1):121–134
46.
Zurück zum Zitat Vasanthan N, Salem DR (2001) FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J Polym Sci Part B 39(5):536–547CrossRef Vasanthan N, Salem DR (2001) FTIR spectroscopic characterization of structural changes in polyamide-6 fibers during annealing and drawing. J Polym Sci Part B 39(5):536–547CrossRef
47.
Zurück zum Zitat Stepaniak RF, Garton A, Carlsson DJ, Wiles DM (1979) The characterization of nylon 6 filaments by X-ray diffraction. J Appl Polym Sci 23(6):1747–1757CrossRef Stepaniak RF, Garton A, Carlsson DJ, Wiles DM (1979) The characterization of nylon 6 filaments by X-ray diffraction. J Appl Polym Sci 23(6):1747–1757CrossRef
48.
Zurück zum Zitat Ellison MS, Lopes PE, Pennington WT (2008) In-situ X-ray characterization of fiber structure during melt spinning. J Eng Fibers Fabr 3(3):10–21 Ellison MS, Lopes PE, Pennington WT (2008) In-situ X-ray characterization of fiber structure during melt spinning. J Eng Fibers Fabr 3(3):10–21
49.
Zurück zum Zitat Gutowski TG (1997) Advanced composites manufacturing. John Wiley, New York Gutowski TG (1997) Advanced composites manufacturing. John Wiley, New York
50.
Zurück zum Zitat Kim S-E, Wang J, Jordan AM, Korley LTJ, Baer E, Pokorski JK (2014) Surface modification of melt extruded poly(e-caprolactone) nanofibers: toward a new scalable biomaterial scaffold. ACS Macro Lett 3(6):585–589CrossRef Kim S-E, Wang J, Jordan AM, Korley LTJ, Baer E, Pokorski JK (2014) Surface modification of melt extruded poly(e-caprolactone) nanofibers: toward a new scalable biomaterial scaffold. ACS Macro Lett 3(6):585–589CrossRef
51.
Zurück zum Zitat Ma H, Burger C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12(4):970–976CrossRef Ma H, Burger C, Hsiao BS, Chu B (2011) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromolecules 12(4):970–976CrossRef
52.
Zurück zum Zitat Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21(21):7507–7510CrossRef Ma H, Burger C, Hsiao BS, Chu B (2011) Ultra-fine cellulose nanofibers: new nano-scale materials for water purification. J Mater Chem 21(21):7507–7510CrossRef
53.
Zurück zum Zitat Guo A, Roso M, Modesti M, Maire E, Adrien J, Colombo P (2015) In situ carbon thermal reduction method for the production of electrospun metal/SiOC composite fibers. J Mater Sci 50:4221–4231. doi:10.1007/s10853-015-8827-1 CrossRef Guo A, Roso M, Modesti M, Maire E, Adrien J, Colombo P (2015) In situ carbon thermal reduction method for the production of electrospun metal/SiOC composite fibers. J Mater Sci 50:4221–4231. doi:10.​1007/​s10853-015-8827-1 CrossRef
Metadaten
Titel
Processing-structure–property relationships of novel fibrous filters produced by a melt-process
verfasst von
Jia Wang
Ravi Ayyar
Andrew Olah
Eric Baer
Publikationsdatum
24.09.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 1/2016
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-9380-7

Weitere Artikel der Ausgabe 1/2016

Journal of Materials Science 1/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.