Skip to main content
Erschienen in: Journal of Electronic Materials 8/2023

25.05.2023 | Original Research Article

Production and Characterizations of Sol–Gel-Derived Li, Cu:NiOx Particles: An Investigation on the Effects of Li and Cu Incorporation

verfasst von: Begüm Uzunbayır, Salih Alper Akalın, Serdar Yıldırım, Mustafa Erol, Sibel Oğuzlar

Erschienen in: Journal of Electronic Materials | Ausgabe 8/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nickel oxide, a p-type semiconductor material with a large band gap (~ 3.6–4.0 eV), has gained interest from researchers due to its recent and widespread uses. In this work, pristine and doped (Li and Li, Cu) NiOx particles were obtained by the sol–gel method with different fractions (Li: 0.05; Cu: 0.00, 0.05, 0.1, 0.15, 0.30). Phase structures, functional groups, elemental analyses, and optical properties were investigated by x-ray diffractometer (XRD), Fourier-transform infrared spectroscopy, x-ray photoelectron spectroscopy (XPS), and photoluminescence measurements, respectively. The XPS and XRD results indicated that Li+ and Cu2+ incorporation into NiOx structure was successfully achieved and the crystallite size decreased owing to Li+ and Cu2+ addition. The particles were excited at 362 nm and exhibited a peak at 550 nm as a maximum emission peak with bi-exponential decay curves. With the Li+ and Cu2+ incorporation into the structure, both emission-based intensity and average decay time values decreased.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Q. Lian, P. Wang, G. Wang, X. Zhang, Y. Huang, D. Li, G. Mi, R. Shi, A. Amini, L. Zhang, and C. Cheng, Doping free and amorphous NiOx film via UV irradiation for efficient inverted perovskite solar cells. Adv. Sci. 9, 2201543 (2022).CrossRef Q. Lian, P. Wang, G. Wang, X. Zhang, Y. Huang, D. Li, G. Mi, R. Shi, A. Amini, L. Zhang, and C. Cheng, Doping free and amorphous NiOx film via UV irradiation for efficient inverted perovskite solar cells. Adv. Sci. 9, 2201543 (2022).CrossRef
2.
Zurück zum Zitat B. Shen, M. Chen, F. Zhang, D. Liu, X. Liu, J. Xie, S. Yang, Y. Hou, and H.G. Yang, Chemical bath deposition of NiOx-NiSO4 heterostructured hole transport layer for perovskite solar cells. Adv. Energy Sustain. Res. 3, 2200055 (2022).CrossRef B. Shen, M. Chen, F. Zhang, D. Liu, X. Liu, J. Xie, S. Yang, Y. Hou, and H.G. Yang, Chemical bath deposition of NiOx-NiSO4 heterostructured hole transport layer for perovskite solar cells. Adv. Energy Sustain. Res. 3, 2200055 (2022).CrossRef
3.
Zurück zum Zitat Z. Xiao, W. Zhou, N. Zhang, C. Liao, S. Huang, G. Chen, G. Chen, M. Liu, X. Liu, and R. Ma, Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chem. Commun. 57, 6070 (2021).CrossRef Z. Xiao, W. Zhou, N. Zhang, C. Liao, S. Huang, G. Chen, G. Chen, M. Liu, X. Liu, and R. Ma, Lithium doped nickel oxide nanocrystals with a tuned electronic structure for oxygen evolution reaction. Chem. Commun. 57, 6070 (2021).CrossRef
4.
Zurück zum Zitat L. Huang, Y. Wang, X. Zhu, X. Zhao, G. Li, L. Li, and W. Sun, Mg-doped nickel oxide as efficient hole-transport layer for perovskite photodetectors. J. Phys. Chem. C 125, 16066 (2021).CrossRef L. Huang, Y. Wang, X. Zhu, X. Zhao, G. Li, L. Li, and W. Sun, Mg-doped nickel oxide as efficient hole-transport layer for perovskite photodetectors. J. Phys. Chem. C 125, 16066 (2021).CrossRef
5.
Zurück zum Zitat J. Liu, H. Wang, R. Ye, P. Jian, and L. Wang, Promotional effect of Mn-doping on the catalytic performance of NiO sheets for the selective oxidation of styrene. J. Colloid Interface Sci. 585, 61 (2021).CrossRef J. Liu, H. Wang, R. Ye, P. Jian, and L. Wang, Promotional effect of Mn-doping on the catalytic performance of NiO sheets for the selective oxidation of styrene. J. Colloid Interface Sci. 585, 61 (2021).CrossRef
6.
Zurück zum Zitat J. Xue, W. Li, Y. Song, Y. Li, and J. Zhao, Visualization electrochromic-supercapacitor device based on porous Co doped NiO films. J. Alloys Compd. 857, 158087 (2021).CrossRef J. Xue, W. Li, Y. Song, Y. Li, and J. Zhao, Visualization electrochromic-supercapacitor device based on porous Co doped NiO films. J. Alloys Compd. 857, 158087 (2021).CrossRef
7.
Zurück zum Zitat S. Ghazal, N. Khandannasab, H.A. Hosseini, Z. Sabouri, A. Rangrazi, and M. Darroudi, Green synthesis of copper-doped nickel oxide nanoparticles using okra plant extract for the evaluation of their cytotoxicity and photocatalytic properties. Ceram. Int. 47, 27165 (2021).CrossRef S. Ghazal, N. Khandannasab, H.A. Hosseini, Z. Sabouri, A. Rangrazi, and M. Darroudi, Green synthesis of copper-doped nickel oxide nanoparticles using okra plant extract for the evaluation of their cytotoxicity and photocatalytic properties. Ceram. Int. 47, 27165 (2021).CrossRef
8.
Zurück zum Zitat T. Sen, A. Biswas, T.K. Rout, R. Thangavel, and U.G. Nair, Comparative study of morphological, optical and conductive properties between low and heavily zinc doped nickel oxide thin films as hole transporting material. J. Alloys Compd. 889, 161613 (2021).CrossRef T. Sen, A. Biswas, T.K. Rout, R. Thangavel, and U.G. Nair, Comparative study of morphological, optical and conductive properties between low and heavily zinc doped nickel oxide thin films as hole transporting material. J. Alloys Compd. 889, 161613 (2021).CrossRef
9.
Zurück zum Zitat N.A. Mala, S. Sivakumar, K.M. Batoo, and M. Hadi, Design and fabrication of iron-doped nickel oxide-based flexible electrode for high-performance energy storage applications. Inorg. Chem. Commun. 131, 108797 (2021).CrossRef N.A. Mala, S. Sivakumar, K.M. Batoo, and M. Hadi, Design and fabrication of iron-doped nickel oxide-based flexible electrode for high-performance energy storage applications. Inorg. Chem. Commun. 131, 108797 (2021).CrossRef
10.
Zurück zum Zitat W.S. Tseng, J.S. Hung, Z.Y. Jian, J.Z. Huang, J. Bin Yang, W.H. Hsu, C.I. Wu, X. Li Huang, and M.H. Chen, The effects of interfacial dipole caused by annealing-free Al-doped NiOx in efficient perovskite solar cells. Solar Energy 233, 345 (2022).CrossRef W.S. Tseng, J.S. Hung, Z.Y. Jian, J.Z. Huang, J. Bin Yang, W.H. Hsu, C.I. Wu, X. Li Huang, and M.H. Chen, The effects of interfacial dipole caused by annealing-free Al-doped NiOx in efficient perovskite solar cells. Solar Energy 233, 345 (2022).CrossRef
11.
Zurück zum Zitat W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, and Z.B. He, Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 8, 1703519 (2018).CrossRef W. Chen, Y. Wu, J. Fan, A.B. Djurišić, F. Liu, H.W. Tam, A. Ng, C. Surya, W.K. Chan, D. Wang, and Z.B. He, Understanding the doping effect on NiO: toward high-performance inverted perovskite solar cells. Adv. Energy Mater. 8, 1703519 (2018).CrossRef
12.
Zurück zum Zitat F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, and J. You, Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393 (2020).CrossRef F. Ma, Y. Zhao, J. Li, X. Zhang, H. Gu, and J. You, Nickel oxide for inverted structure perovskite solar cells. J. Energy Chem. 52, 393 (2020).CrossRef
13.
Zurück zum Zitat M.H. Liu, Z.J. Zhou, P.-P. Zhang, Q.W. Tian, W.H. Zhou, D.X. Kou, and S.X. Wu, p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. Opt. Express 24, A1349 (2016).CrossRef M.H. Liu, Z.J. Zhou, P.-P. Zhang, Q.W. Tian, W.H. Zhou, D.X. Kou, and S.X. Wu, p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. Opt. Express 24, A1349 (2016).CrossRef
14.
Zurück zum Zitat A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga, and G.F.B.L. Silva, Optical and electrochemical applications of Li-doped NiO nanostructures synthesized via facile microwave technique. Materials 13, 2961 (2020).CrossRef A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga, and G.F.B.L. Silva, Optical and electrochemical applications of Li-doped NiO nanostructures synthesized via facile microwave technique. Materials 13, 2961 (2020).CrossRef
15.
Zurück zum Zitat Y. Liu, J. Song, Y. Qin, Q. Qiu, Y. Zhao, L. Zhu, and Y. Qiang, Cu-doped nickel oxide hole transporting layer via efficient low-temperature spraying combustion method for perovskite solar cells. J. Mater. Sci.: Mater. Electron. 30, 15627 (2019). Y. Liu, J. Song, Y. Qin, Q. Qiu, Y. Zhao, L. Zhu, and Y. Qiang, Cu-doped nickel oxide hole transporting layer via efficient low-temperature spraying combustion method for perovskite solar cells. J. Mater. Sci.: Mater. Electron. 30, 15627 (2019).
16.
Zurück zum Zitat D. Ouyang, J. Zheng, Z. Huang, L. Zhu, and W.C.H. Choy, An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells. J Mater. Chem. A Mater. 9, 371 (2021).CrossRef D. Ouyang, J. Zheng, Z. Huang, L. Zhu, and W.C.H. Choy, An efficacious multifunction codoping strategy on a room-temperature solution-processed hole transport layer for realizing high-performance perovskite solar cells. J Mater. Chem. A Mater. 9, 371 (2021).CrossRef
17.
Zurück zum Zitat M. Rakibuddin, M.A. Shinde, and H. Kim, Sol–gel fabrication of NiO and NiO/WO3 based electrochromic device on ITO and flexible substrate. Ceram Int. 46, 8631 (2020).CrossRef M. Rakibuddin, M.A. Shinde, and H. Kim, Sol–gel fabrication of NiO and NiO/WO3 based electrochromic device on ITO and flexible substrate. Ceram Int. 46, 8631 (2020).CrossRef
18.
Zurück zum Zitat S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, and J. Pant, Ce doped NiO nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 114, 28 (2018).CrossRef S.R. Gawali, V.L. Patil, V.G. Deonikar, S.S. Patil, D.R. Patil, P.S. Patil, and J. Pant, Ce doped NiO nanoparticles as selective NO2 gas sensor. J. Phys. Chem. Solids 114, 28 (2018).CrossRef
19.
Zurück zum Zitat D. Tripathy, B.B. Panda, and N. Maity, Effect of annealing temperature on copper-doped nickel oxide nanomaterials for efficient degradation of methylene blue under solar irradiation. J. Electron. Mater. 51, 3598 (2022).CrossRef D. Tripathy, B.B. Panda, and N. Maity, Effect of annealing temperature on copper-doped nickel oxide nanomaterials for efficient degradation of methylene blue under solar irradiation. J. Electron. Mater. 51, 3598 (2022).CrossRef
20.
Zurück zum Zitat T. Phan Nguyen, T. Thi Giang, and I. Tae Kim, Restructuring NiO to LiNiO2: ultrastable and reversible anodes for lithium-ion batteries. Chem. Eng. J. 437, 135292 (2022).CrossRef T. Phan Nguyen, T. Thi Giang, and I. Tae Kim, Restructuring NiO to LiNiO2: ultrastable and reversible anodes for lithium-ion batteries. Chem. Eng. J. 437, 135292 (2022).CrossRef
21.
Zurück zum Zitat F.P.G. Choi, H.M. Alishah, and S. Gunes, Cerium and zinc co-doped nickel oxide hole transport layers for gamma-butyrolactone based ambient air fabrication of CH3NH3PbI3 perovskite solar cells. Appl. Surf. Sci. 563, 150249 (2021).CrossRef F.P.G. Choi, H.M. Alishah, and S. Gunes, Cerium and zinc co-doped nickel oxide hole transport layers for gamma-butyrolactone based ambient air fabrication of CH3NH3PbI3 perovskite solar cells. Appl. Surf. Sci. 563, 150249 (2021).CrossRef
22.
Zurück zum Zitat S.A. Akalin, M. Erol, B. Uzunbayir, S. Oguzlar, and S. Yildirim, Sol–gel derived Li and Mg incorporated nickel oxide particles: an investigation on structural and optical properties. Opt. Mater. 118, 111223 (2021).CrossRef S.A. Akalin, M. Erol, B. Uzunbayir, S. Oguzlar, and S. Yildirim, Sol–gel derived Li and Mg incorporated nickel oxide particles: an investigation on structural and optical properties. Opt. Mater. 118, 111223 (2021).CrossRef
23.
Zurück zum Zitat M.S. Jamal, S.A. Shahahmadi, P. Chelvanathan, H.F. Alharbi, M.R. Karim, M. Ahmad Dar, M. Luqman, N.H. Alharthi, Y.S. Al-Harthi, M. Aminuzzaman, N. Asim, K. Sopian, S.K. Tiong, N. Amin, and M. Akhtaruzzaman, Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys. 14, 102360 (2019).CrossRef M.S. Jamal, S.A. Shahahmadi, P. Chelvanathan, H.F. Alharbi, M.R. Karim, M. Ahmad Dar, M. Luqman, N.H. Alharthi, Y.S. Al-Harthi, M. Aminuzzaman, N. Asim, K. Sopian, S.K. Tiong, N. Amin, and M. Akhtaruzzaman, Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results Phys. 14, 102360 (2019).CrossRef
24.
Zurück zum Zitat E.S. Agudosi, E.C. Abdullah, A. Numan, M. Khalid, N.M. Mubarak, R. Benages-Vilau, P. Gómez-Romero, S.R. Aid, and N. Omar, Optimisation of NiO electrodeposition on 3D graphene electrode for electrochemical energy storage using response surface methodology. J. Electroanal. Chem. 882, 114992 (2021).CrossRef E.S. Agudosi, E.C. Abdullah, A. Numan, M. Khalid, N.M. Mubarak, R. Benages-Vilau, P. Gómez-Romero, S.R. Aid, and N. Omar, Optimisation of NiO electrodeposition on 3D graphene electrode for electrochemical energy storage using response surface methodology. J. Electroanal. Chem. 882, 114992 (2021).CrossRef
25.
Zurück zum Zitat M. Aftab, M.Z. Butt, D. Ali, F. Bashir, and T.M. Khan, Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Opt. Mater. 119, 111369 (2021).CrossRef M. Aftab, M.Z. Butt, D. Ali, F. Bashir, and T.M. Khan, Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Opt. Mater. 119, 111369 (2021).CrossRef
26.
Zurück zum Zitat Q. He, K. Yao, X. Wang, X. Xia, S. Leng, and F. Li, Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl. Mater. Interfaces 9, 41887–41897 (2017).CrossRef Q. He, K. Yao, X. Wang, X. Xia, S. Leng, and F. Li, Room-temperature and solution-processable Cu-doped nickel oxide nanoparticles for efficient hole-transport layers of flexible large-area perovskite solar cells. ACS Appl. Mater. Interfaces 9, 41887–41897 (2017).CrossRef
27.
Zurück zum Zitat J. Chen, X. Wu, Q. Tan, and Y. Chen, Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries. New J. Chem. 42, 9901 (2018).CrossRef J. Chen, X. Wu, Q. Tan, and Y. Chen, Designed synthesis of ultrafine NiO nanocrystals bonded on a three dimensional graphene framework for high-capacity lithium-ion batteries. New J. Chem. 42, 9901 (2018).CrossRef
28.
Zurück zum Zitat W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).CrossRef W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, and L. Han, Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944 (2015).CrossRef
29.
Zurück zum Zitat K.S. Muthu and P. Perumal, Synthesis and characterization of NiO nanoparticles using egg white method. J. Mater. Sci.: Mater. Electron. 28, 9612 (2017). K.S. Muthu and P. Perumal, Synthesis and characterization of NiO nanoparticles using egg white method. J. Mater. Sci.: Mater. Electron. 28, 9612 (2017).
30.
Zurück zum Zitat R.V. Poonguzhali, E.R. Kumar, N. Arunadevi, C. Srinivas, M.E. Khalifa, S. Abu-Melha, and N.M. El-Metwaly, Natural citric acid assisted synthesis of CuO nanoparticles: evaluation of structural, optical, morphological properties and colloidal stability for gas sensor applications. Ceram. Int. 48, 26287 (2022).CrossRef R.V. Poonguzhali, E.R. Kumar, N. Arunadevi, C. Srinivas, M.E. Khalifa, S. Abu-Melha, and N.M. El-Metwaly, Natural citric acid assisted synthesis of CuO nanoparticles: evaluation of structural, optical, morphological properties and colloidal stability for gas sensor applications. Ceram. Int. 48, 26287 (2022).CrossRef
31.
Zurück zum Zitat Z. He, Z. Ji, S. Zhao, C. Wang, K. Liu, and Z. Ye, Characterization and electrochromic properties of CuxNi1-xO films prepared by Sol–gel dip-coating. Sol. Energy 80, 226 (2006).CrossRef Z. He, Z. Ji, S. Zhao, C. Wang, K. Liu, and Z. Ye, Characterization and electrochromic properties of CuxNi1-xO films prepared by Sol–gel dip-coating. Sol. Energy 80, 226 (2006).CrossRef
32.
Zurück zum Zitat J. Ma, L. Yin, and T. Ge, 3D hierarchically mesoporous Cu-doped NiO nanostructures as high-performance anode materials for lithium ion batteries. CrystEngComm 17, 9336 (2015).CrossRef J. Ma, L. Yin, and T. Ge, 3D hierarchically mesoporous Cu-doped NiO nanostructures as high-performance anode materials for lithium ion batteries. CrystEngComm 17, 9336 (2015).CrossRef
33.
Zurück zum Zitat P. Dubey and N. Kaurav, Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides (London: IntechOpen, 2020). P. Dubey and N. Kaurav, Structure Processing Properties Relationships in Stoichiometric and Nonstoichiometric Oxides (London: IntechOpen, 2020).
34.
Zurück zum Zitat R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRef R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751 (1976).CrossRef
35.
Zurück zum Zitat Y. Li, X. Li, Z. Wang, H. Guo, and T. Li, One-step synthesis of Li-doped NiO as high-performance anode material for lithium ion batteries. Ceram. Int. 42, 14565 (2016).CrossRef Y. Li, X. Li, Z. Wang, H. Guo, and T. Li, One-step synthesis of Li-doped NiO as high-performance anode material for lithium ion batteries. Ceram. Int. 42, 14565 (2016).CrossRef
36.
Zurück zum Zitat D. Huang, H. Liu, T. Li, and Q. Niu, Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance. J. Sol–gel Sci. Technol. 89, 511 (2019).CrossRef D. Huang, H. Liu, T. Li, and Q. Niu, Template-free synthesis of NiO skeleton crystal octahedron and effect of surface depression on electrochemical performance. J. Sol–gel Sci. Technol. 89, 511 (2019).CrossRef
37.
Zurück zum Zitat A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga, and G.F.L.E. Silva, Optical and electrochemical applications of Li-doped NiO nanostructures synthesized via facile microwave technique. Materials 13(13), 2961 (2020).CrossRef A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga, and G.F.L.E. Silva, Optical and electrochemical applications of Li-doped NiO nanostructures synthesized via facile microwave technique. Materials 13(13), 2961 (2020).CrossRef
38.
Zurück zum Zitat S. Huang, Y. Wang, S. Shen, Y. Tang, A. Yu, B. Kang, S.R.P. Silva, and G. Lu, Enhancing the performance of polymer solar cells using solution-processed copper doped nickel oxide nanoparticles as hole transport layer. J. Colloid Interface Sci. 535, 308 (2019).CrossRef S. Huang, Y. Wang, S. Shen, Y. Tang, A. Yu, B. Kang, S.R.P. Silva, and G. Lu, Enhancing the performance of polymer solar cells using solution-processed copper doped nickel oxide nanoparticles as hole transport layer. J. Colloid Interface Sci. 535, 308 (2019).CrossRef
39.
Zurück zum Zitat B. Bashir, M.U. Khalid, M. Aadil, S. Zulfiqar, M.F. Warsi, P.O. Agboola, and I. Shakir, CuxNi1−xO nanostructures and their nanocomposites with reduced graphene oxide: synthesis, characterization, and photocatalytic applications. Ceram. Int. 47, 3603 (2021).CrossRef B. Bashir, M.U. Khalid, M. Aadil, S. Zulfiqar, M.F. Warsi, P.O. Agboola, and I. Shakir, CuxNi1−xO nanostructures and their nanocomposites with reduced graphene oxide: synthesis, characterization, and photocatalytic applications. Ceram. Int. 47, 3603 (2021).CrossRef
40.
Zurück zum Zitat K. Varunkumar, R. Hussain, G. Hegde, and A.S. Ethiraj, Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Mater. Sci. Semicond. Process. 66, 149 (2017).CrossRef K. Varunkumar, R. Hussain, G. Hegde, and A.S. Ethiraj, Effect of calcination temperature on Cu doped NiO nanoparticles prepared via wet-chemical method: structural, optical and morphological studies. Mater. Sci. Semicond. Process. 66, 149 (2017).CrossRef
41.
Zurück zum Zitat S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, S. Abbas, and Z. Ali, Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries. J. Solid State Chem. 202, 43 (2013).CrossRef S.M. Abbas, S.T. Hussain, S. Ali, N. Ahmad, N. Ali, S. Abbas, and Z. Ali, Modification of carbon nanotubes by CuO-doped NiO nanocomposite for use as an anode material for lithium-ion batteries. J. Solid State Chem. 202, 43 (2013).CrossRef
42.
Zurück zum Zitat A. Rahdar, M. Aliahmad, and Y. Azizi, Synthesis of Cu doped NiO nanoparticles by chemical method. J. Nanostruct. 4, 145 (2014). A. Rahdar, M. Aliahmad, and Y. Azizi, Synthesis of Cu doped NiO nanoparticles by chemical method. J. Nanostruct. 4, 145 (2014).
43.
Zurück zum Zitat J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of x-ray Photoelectron Spectroscopy (Waltham: Perkin-Elmer Corp, 1992). J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of x-ray Photoelectron Spectroscopy (Waltham: Perkin-Elmer Corp, 1992).
44.
Zurück zum Zitat H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang, and Y. Luo, Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res. Lett. 9, 1 (2014).CrossRef H. Yan, D. Zhang, J. Xu, Y. Lu, Y. Liu, K. Qiu, Y. Zhang, and Y. Luo, Solution growth of NiO nanosheets supported on Ni foam as high-performance electrodes for supercapacitors. Nanoscale Res. Lett. 9, 1 (2014).CrossRef
45.
Zurück zum Zitat W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, and X. Li, 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci. Rep. 7, 1 (2017). W. Huang, S. Ding, Y. Chen, W. Hao, X. Lai, J. Peng, J. Tu, Y. Cao, and X. Li, 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci. Rep. 7, 1 (2017).
46.
Zurück zum Zitat L. Xu, X. Chen, J. Jin, W. Liu, B. Dong, X. Bai, H. Song, and P. Reiss, Inverted perovskite solar cells employing doped NiO hole transport layers: a review. Nano Energy 63, 103860 (2019).CrossRef L. Xu, X. Chen, J. Jin, W. Liu, B. Dong, X. Bai, H. Song, and P. Reiss, Inverted perovskite solar cells employing doped NiO hole transport layers: a review. Nano Energy 63, 103860 (2019).CrossRef
47.
Zurück zum Zitat C. Mrabet, M. Ben Amor, A. Boukhachem, M. Amlouk, and T. Manoubi, Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram. Int. 42, 5963 (2016).CrossRef C. Mrabet, M. Ben Amor, A. Boukhachem, M. Amlouk, and T. Manoubi, Physical properties of La-doped NiO sprayed thin films for optoelectronic and sensor applications. Ceram. Int. 42, 5963 (2016).CrossRef
48.
Zurück zum Zitat K.N. Patel, M.P. Deshpande, K. Chauhan, P. Rajput, V. Sathe, S. Pandya, and S.H. Chaki, Synthesis, structural and photoluminescence properties of nano-crystalline Cu doped NiO. Mater. Res. Express 4, 105027 (2017).CrossRef K.N. Patel, M.P. Deshpande, K. Chauhan, P. Rajput, V. Sathe, S. Pandya, and S.H. Chaki, Synthesis, structural and photoluminescence properties of nano-crystalline Cu doped NiO. Mater. Res. Express 4, 105027 (2017).CrossRef
49.
Zurück zum Zitat A.C. Gandhi and S.Y. Wu, Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials 7, 231 (2017).CrossRef A.C. Gandhi and S.Y. Wu, Strong deep-level-emission photoluminescence in NiO nanoparticles. Nanomaterials 7, 231 (2017).CrossRef
50.
Zurück zum Zitat M.N. Siddique and P. Tripathi, Lattice defects formulated ferromagnetism in nonmagnetic La (III) ion doped NiO nanostructures: role of oxygen vacancy. J. Alloys Compd. 825, 154071 (2020).CrossRef M.N. Siddique and P. Tripathi, Lattice defects formulated ferromagnetism in nonmagnetic La (III) ion doped NiO nanostructures: role of oxygen vacancy. J. Alloys Compd. 825, 154071 (2020).CrossRef
51.
Zurück zum Zitat F. Hazeghi, S. Mozaffari, and S.M.B. Ghorashi, Metal organic framework–derived core-shell CuO@NiO nanosphares as hole transport material in perovskite solar cell. J. Solid State Electrochem. 24, 1427 (2020).CrossRef F. Hazeghi, S. Mozaffari, and S.M.B. Ghorashi, Metal organic framework–derived core-shell CuO@NiO nanosphares as hole transport material in perovskite solar cell. J. Solid State Electrochem. 24, 1427 (2020).CrossRef
52.
Zurück zum Zitat W.N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, and K. Okuyama, Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem. Mater. 19, 1723 (2007).CrossRef W.N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, and K. Okuyama, Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors. Chem. Mater. 19, 1723 (2007).CrossRef
53.
Zurück zum Zitat M. Maiberg, T. Hölscher, S. Zahedi-Azad, and R. Scheer, Theoretical study of time-resolved luminescence in semiconductors, III trap states in the band gap. J. Appl. Phys. 118, 105701 (2015).CrossRef M. Maiberg, T. Hölscher, S. Zahedi-Azad, and R. Scheer, Theoretical study of time-resolved luminescence in semiconductors, III trap states in the band gap. J. Appl. Phys. 118, 105701 (2015).CrossRef
54.
Zurück zum Zitat R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D.C. Kothari, and A. Miotello, Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B. 168, 333 (2015).CrossRef R. Jaiswal, J. Bharambe, N. Patel, A. Dashora, D.C. Kothari, and A. Miotello, Copper and nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B. 168, 333 (2015).CrossRef
Metadaten
Titel
Production and Characterizations of Sol–Gel-Derived Li, Cu:NiOx Particles: An Investigation on the Effects of Li and Cu Incorporation
verfasst von
Begüm Uzunbayır
Salih Alper Akalın
Serdar Yıldırım
Mustafa Erol
Sibel Oğuzlar
Publikationsdatum
25.05.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 8/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10500-z

Weitere Artikel der Ausgabe 8/2023

Journal of Electronic Materials 8/2023 Zur Ausgabe

Neuer Inhalt