Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Production and Perception of Voice

verfasst von : Rita Singh

Erschienen in: Profiling Humans from their Voice

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The goal of this chapter is to present the human speech production process in sufficient detail for the reader to understand why profiling should be possible, and to provide sufficient information to reason about the effects of different parameters on voice, so that profiling efforts may be better guided. The details are sufficient, but not complete since the area is too vast to be covered within one chapter of this book.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Titze, I. R., Luschei, E. S., & Hirano, M. (1989). Role of the thyroarytenoid muscle in regulation of fundamental frequency. Journal of Voice, 3(3), 213–224.CrossRef Titze, I. R., Luschei, E. S., & Hirano, M. (1989). Role of the thyroarytenoid muscle in regulation of fundamental frequency. Journal of Voice, 3(3), 213–224.CrossRef
2.
Zurück zum Zitat Hermand, E., Lhuissier, F. J., Larribaut, J., Pichon, A., & Richalet, J. P. (2015). Ventilatory oscillations at exercise: Effects of hyperoxia, hypercapnia, and acetazolamide. Physiological Reports, 3(6), e12446. Hermand, E., Lhuissier, F. J., Larribaut, J., Pichon, A., & Richalet, J. P. (2015). Ventilatory oscillations at exercise: Effects of hyperoxia, hypercapnia, and acetazolamide. Physiological Reports, 3(6), e12446.
3.
Zurück zum Zitat Yamagishi, M., Ishizuka, Y., Fujiwara, M., Nakamura, H., Igarashi, S., Nakano, Y., et al. (1993). Distribution of calcium binding proteins in sensory organs of the ear, nose and throat. Acta Oto-Laryngologica, 113(sup506), 85–89.CrossRef Yamagishi, M., Ishizuka, Y., Fujiwara, M., Nakamura, H., Igarashi, S., Nakano, Y., et al. (1993). Distribution of calcium binding proteins in sensory organs of the ear, nose and throat. Acta Oto-Laryngologica, 113(sup506), 85–89.CrossRef
4.
Zurück zum Zitat Sataloff, R. T. (2017). Clinical anatomy and physiology of the voice. Professional voice: The science and art of clinical care (4th ed., pp. 157–196). California: Plural Publishing, San Diego. Sataloff, R. T. (2017). Clinical anatomy and physiology of the voice. Professional voice: The science and art of clinical care (4th ed., pp. 157–196). California: Plural Publishing, San Diego.
5.
Zurück zum Zitat Baer, T. (1981). Investigation of the phonatory mechanism. Status report on speech research SR-66 (pp. 35–54). New Haven: Haskins Laboratories. Baer, T. (1981). Investigation of the phonatory mechanism. Status report on speech research SR-66 (pp. 35–54). New Haven: Haskins Laboratories.
6.
Zurück zum Zitat Zhang, Z. (2009). Characteristics of phonation onset in a two-layer vocal fold model. The Journal of the Acoustical Society of America, 125(2), 1091–1102.CrossRef Zhang, Z. (2009). Characteristics of phonation onset in a two-layer vocal fold model. The Journal of the Acoustical Society of America, 125(2), 1091–1102.CrossRef
7.
Zurück zum Zitat Flanagan, J., & Landgraf, L. (1968). Self-oscillating source for vocal-tract synthesizers. IEEE Transactions on Audio and Electroacoustics, 16(1), 57–64.CrossRef Flanagan, J., & Landgraf, L. (1968). Self-oscillating source for vocal-tract synthesizers. IEEE Transactions on Audio and Electroacoustics, 16(1), 57–64.CrossRef
8.
Zurück zum Zitat Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell System Technical Journal, 51(6), 1233–1268.CrossRef Ishizaka, K., & Flanagan, J. L. (1972). Synthesis of voiced sounds from a two-mass model of the vocal cords. Bell System Technical Journal, 51(6), 1233–1268.CrossRef
9.
Zurück zum Zitat Zhang, Z., Neubauer, J., & Berry, D. A. (2006). The influence of subglottal acoustics on laboratory models of phonation. The Journal of the Acoustical Society of America, 120(3), 1558–1569.CrossRef Zhang, Z., Neubauer, J., & Berry, D. A. (2006). The influence of subglottal acoustics on laboratory models of phonation. The Journal of the Acoustical Society of America, 120(3), 1558–1569.CrossRef
10.
Zurück zum Zitat Zhang, Z., Neubauer, J., & Berry, D. A. (2007). Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation. The Journal of the Acoustical Society of America, 122(4), 2279–2295.CrossRef Zhang, Z., Neubauer, J., & Berry, D. A. (2007). Physical mechanisms of phonation onset: A linear stability analysis of an aeroelastic continuum model of phonation. The Journal of the Acoustical Society of America, 122(4), 2279–2295.CrossRef
11.
Zurück zum Zitat Zhao, W., Zhang, C., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms. The Journal of the Acoustical Society of America, 112(5), 2134–2146.CrossRef Zhao, W., Zhang, C., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part I: Computational methods and sound generation mechanisms. The Journal of the Acoustical Society of America, 112(5), 2134–2146.CrossRef
12.
Zurück zum Zitat Zhang, C., Zhao, W., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds. The Journal of the Acoustical Society of America, 112(5), 2147–2154.CrossRef Zhang, C., Zhao, W., Frankel, S. H., & Mongeau, L. (2002). Computational aeroacoustics of phonation, part II: Effects of flow parameters and ventricular folds. The Journal of the Acoustical Society of America, 112(5), 2147–2154.CrossRef
13.
Zurück zum Zitat Chan, R. W., & Titze, I. R. (1999). Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. The Journal of the Acoustical Society of America, 106(4), 2008–2021.CrossRef Chan, R. W., & Titze, I. R. (1999). Viscoelastic shear properties of human vocal fold mucosa: Measurement methodology and empirical results. The Journal of the Acoustical Society of America, 106(4), 2008–2021.CrossRef
14.
Zurück zum Zitat Chan, R. W., & Rodriguez, M. L. (2008). A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies. The Journal of the Acoustical Society of America, 124(2), 1207–1219.CrossRef Chan, R. W., & Rodriguez, M. L. (2008). A simple-shear rheometer for linear viscoelastic characterization of vocal fold tissues at phonatory frequencies. The Journal of the Acoustical Society of America, 124(2), 1207–1219.CrossRef
15.
Zurück zum Zitat Miri, A. K., Mongrain, R., Chen, L. X., & Mongeau, L. (2012). Quantitative assessment of the anisotropy of vocal fold tissue using shear rheometry and traction testing. Journal of Biomechanics, 45(16), 2943–2946.CrossRef Miri, A. K., Mongrain, R., Chen, L. X., & Mongeau, L. (2012). Quantitative assessment of the anisotropy of vocal fold tissue using shear rheometry and traction testing. Journal of Biomechanics, 45(16), 2943–2946.CrossRef
16.
Zurück zum Zitat Kazemirad, S., Bakhshaee, H., Mongeau, L., & Kost, K. (2014). Non-invasive in vivo measurement of the shear modulus of human vocal fold tissue. Journal of Biomechanics, 47(5), 1173–1179.CrossRef Kazemirad, S., Bakhshaee, H., Mongeau, L., & Kost, K. (2014). Non-invasive in vivo measurement of the shear modulus of human vocal fold tissue. Journal of Biomechanics, 47(5), 1173–1179.CrossRef
17.
Zurück zum Zitat Haji, T., Mori, K., Omori, K., & Isshiki, N. (1992). Experimental studies on the viscoelasticity of the vocal fold. Acta Oto-Laryngologica, 112(1), 151–159.CrossRef Haji, T., Mori, K., Omori, K., & Isshiki, N. (1992). Experimental studies on the viscoelasticity of the vocal fold. Acta Oto-Laryngologica, 112(1), 151–159.CrossRef
18.
Zurück zum Zitat Tran, Q. T., Gerratt, B. R., Berke, G. S., & Kreiman, J. (1993). Measurement of Young’s modulus in the in vivo human vocal folds. Annals of Otology, Rhinology and Laryngology, 102(8), 584–591.CrossRef Tran, Q. T., Gerratt, B. R., Berke, G. S., & Kreiman, J. (1993). Measurement of Young’s modulus in the in vivo human vocal folds. Annals of Otology, Rhinology and Laryngology, 102(8), 584–591.CrossRef
19.
Zurück zum Zitat Chhetri, D. K., Zhang, Z., & Neubauer, J. (2011). Measurement of Young’s modulus of vocal folds by indentation. Journal of Voice, 25(1), 1–7.CrossRef Chhetri, D. K., Zhang, Z., & Neubauer, J. (2011). Measurement of Young’s modulus of vocal folds by indentation. Journal of Voice, 25(1), 1–7.CrossRef
20.
Zurück zum Zitat Scherer, R. C., Shinwari, D., De Witt, K. J., Zhang, C., Kucinschi, B. R., & Afjeh, A. A. (2001). Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. The Journal of the Acoustical Society of America, 109(4), 1616–1630.CrossRef Scherer, R. C., Shinwari, D., De Witt, K. J., Zhang, C., Kucinschi, B. R., & Afjeh, A. A. (2001). Intraglottal pressure profiles for a symmetric and oblique glottis with a divergence angle of 10 degrees. The Journal of the Acoustical Society of America, 109(4), 1616–1630.CrossRef
21.
Zurück zum Zitat Li, S., Scherer, R. C., Wan, M., & Wang, S. (2012). The effect of entrance radii on intraglottal pressure distributions in the divergent glottis. The Journal of the Acoustical Society of America, 131(2), 1371–1377.CrossRef Li, S., Scherer, R. C., Wan, M., & Wang, S. (2012). The effect of entrance radii on intraglottal pressure distributions in the divergent glottis. The Journal of the Acoustical Society of America, 131(2), 1371–1377.CrossRef
22.
Zurück zum Zitat Kettlewell, B. Q. (2015). The influence of intraglottal vortices upon the dynamics of the vocal folds. Master’s thesis, University of Waterloo, Canada. Kettlewell, B. Q. (2015). The influence of intraglottal vortices upon the dynamics of the vocal folds. Master’s thesis, University of Waterloo, Canada.
23.
Zurück zum Zitat Shinwari, D., Scherer, R. C., DeWitt, K. J., & Afjeh, A. A. (2003). Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees. The Journal of the Acoustical Society of America, 113(1), 487–497.CrossRef Shinwari, D., Scherer, R. C., DeWitt, K. J., & Afjeh, A. A. (2003). Flow visualization and pressure distributions in a model of the glottis with a symmetric and oblique divergent angle of 10 degrees. The Journal of the Acoustical Society of America, 113(1), 487–497.CrossRef
24.
Zurück zum Zitat Kucinschi, B. R., Scherer, R. C., DeWitt, K. J., & Ng, T. T. (2006). Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. Journal of Biomechanical Engineering, 128(3), 380–390.CrossRef Kucinschi, B. R., Scherer, R. C., DeWitt, K. J., & Ng, T. T. (2006). Flow visualization and acoustic consequences of the air moving through a static model of the human larynx. Journal of Biomechanical Engineering, 128(3), 380–390.CrossRef
25.
Zurück zum Zitat Erath, B. D., & Plesniak, M. W. (2006). The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds. The Journal of the Acoustical Society of America, 120(2), 1000–1011.CrossRef Erath, B. D., & Plesniak, M. W. (2006). The occurrence of the Coanda effect in pulsatile flow through static models of the human vocal folds. The Journal of the Acoustical Society of America, 120(2), 1000–1011.CrossRef
26.
Zurück zum Zitat Mihaescu, M., Khosla, S. M., Murugappan, S., & Gutmark, E. J. (2010). Unsteady laryngeal airflow simulations of the intra-glottal vortical structures. The Journal of the Acoustical Society of America, 127(1), 435–444.CrossRef Mihaescu, M., Khosla, S. M., Murugappan, S., & Gutmark, E. J. (2010). Unsteady laryngeal airflow simulations of the intra-glottal vortical structures. The Journal of the Acoustical Society of America, 127(1), 435–444.CrossRef
27.
Zurück zum Zitat Hirano, M., Kakita, Y., & Daniloff, R. G. (1985). Cover-body theory of vocal fold vibration. In R. G. Daniloff (Ed.), Speech science (pp. 1–46). San Diego, California: College-Hill Press. Hirano, M., Kakita, Y., & Daniloff, R. G. (1985). Cover-body theory of vocal fold vibration. In R. G. Daniloff (Ed.), Speech science (pp. 1–46). San Diego, California: College-Hill Press.
28.
Zurück zum Zitat Alipour, F., & Vigmostad, S. (2012). Measurement of vocal folds elastic properties for continuum modeling. Journal of Voice, 26(6), 816-e21.CrossRef Alipour, F., & Vigmostad, S. (2012). Measurement of vocal folds elastic properties for continuum modeling. Journal of Voice, 26(6), 816-e21.CrossRef
29.
Zurück zum Zitat Kelleher, J. E., Siegmund, T., Du, M., Naseri, E., & Chan, R. W. (2013). Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomechanics and Modeling in Mechanobiology, 12(3), 555–567.CrossRef Kelleher, J. E., Siegmund, T., Du, M., Naseri, E., & Chan, R. W. (2013). Empirical measurements of biomechanical anisotropy of the human vocal fold lamina propria. Biomechanics and Modeling in Mechanobiology, 12(3), 555–567.CrossRef
30.
Zurück zum Zitat Xuan, Y., & Zhang, Z. (2014). Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model. Journal of Speech, Language, and Hearing Research, 57(2), 416–425.MathSciNetCrossRef Xuan, Y., & Zhang, Z. (2014). Influence of embedded fibers and an epithelium layer on the glottal closure pattern in a physical vocal fold model. Journal of Speech, Language, and Hearing Research, 57(2), 416–425.MathSciNetCrossRef
31.
Zurück zum Zitat Hirano, M. (1974). Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica et Logopaedica, 26(2), 89–94.CrossRef Hirano, M. (1974). Morphological structure of the vocal cord as a vibrator and its variations. Folia Phoniatrica et Logopaedica, 26(2), 89–94.CrossRef
32.
Zurück zum Zitat Hirano, M., Kurita, S., & Sakaguchi, S. (1989). Ageing of the vibratory tissue of human vocal folds. Acta Oto-Laryngologica, 107(5–6), 428–433.CrossRef Hirano, M., Kurita, S., & Sakaguchi, S. (1989). Ageing of the vibratory tissue of human vocal folds. Acta Oto-Laryngologica, 107(5–6), 428–433.CrossRef
33.
Zurück zum Zitat Zhang, Z. (2010). Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. The Journal of the Acoustical Society of America, 127(4), 2554–2562.CrossRef Zhang, Z. (2010). Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics. The Journal of the Acoustical Society of America, 127(4), 2554–2562.CrossRef
34.
Zurück zum Zitat Horáček, J., & Švec, J. G. (2002). Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. Journal of Fluids and Structures, 16(7), 931–955.CrossRef Horáček, J., & Švec, J. G. (2002). Aeroelastic model of vocal-fold-shaped vibrating element for studying the phonation threshold. Journal of Fluids and Structures, 16(7), 931–955.CrossRef
35.
Zurück zum Zitat Titze, I. R., & Strong, W. J. (1975). Normal modes in vocal cord tissues. The Journal of the Acoustical Society of America, 57(3), 736–744.CrossRef Titze, I. R., & Strong, W. J. (1975). Normal modes in vocal cord tissues. The Journal of the Acoustical Society of America, 57(3), 736–744.CrossRef
36.
37.
Zurück zum Zitat Mergell, P., & Herzel, G. H. (1997). Speech Communication, 22(2–3), 141–154. Mergell, P., & Herzel, G. H. (1997). Speech Communication, 22(2–3), 141–154.
38.
Zurück zum Zitat Berry, D. A., Zhang, Z., & Neubauer, J. (2006). Mechanisms of irregular vibration in a physical model of the vocal folds. The Journal of the Acoustical Society of America, 120(3), EL36–EL42. Berry, D. A., Zhang, Z., & Neubauer, J. (2006). Mechanisms of irregular vibration in a physical model of the vocal folds. The Journal of the Acoustical Society of America, 120(3), EL36–EL42.
39.
Zurück zum Zitat Steinecke, I., & Herzel, H. (1995). Bifurcations in an asymmetric vocal-fold model. The Journal of the Acoustical Society of America, 97(3), 1874–1884.CrossRef Steinecke, I., & Herzel, H. (1995). Bifurcations in an asymmetric vocal-fold model. The Journal of the Acoustical Society of America, 97(3), 1874–1884.CrossRef
40.
Zurück zum Zitat Herbst, C. T., Lohscheller, J., Švec, J. G., Henrich, N., Weissengruber, G., & Fitch, W. T. (2014). Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. Journal of Experimental Biology, 217(6), 955–963.CrossRef Herbst, C. T., Lohscheller, J., Švec, J. G., Henrich, N., Weissengruber, G., & Fitch, W. T. (2014). Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings. Journal of Experimental Biology, 217(6), 955–963.CrossRef
41.
Zurück zum Zitat Large, J. (1972). Towards an integrated physiologic-acoustic theory of vocal registers. National Association of Teachers of Singing (NATS) Bulletin, 28(3), 18–25. Large, J. (1972). Towards an integrated physiologic-acoustic theory of vocal registers. National Association of Teachers of Singing (NATS) Bulletin, 28(3), 18–25.
42.
Zurück zum Zitat Ware, C. (1998). Basics of vocal pedagogy: The foundations and process of singing. New York: McGraw-Hill. Ware, C. (1998). Basics of vocal pedagogy: The foundations and process of singing. New York: McGraw-Hill.
43.
Zurück zum Zitat Fant, G. (1967). Auditory Patterns of Speech. Models for the perception of speech and visual form (pp. 111–125). Cambridge, Massachusetts: MIT Press. Fant, G. (1967). Auditory Patterns of Speech. Models for the perception of speech and visual form (pp. 111–125). Cambridge, Massachusetts: MIT Press.
44.
Zurück zum Zitat Pinto, N. B., & Childers, D. G. (1988). Formant speech synthesis. IETE Journal of Research, 34(1), 5–20.CrossRef Pinto, N. B., & Childers, D. G. (1988). Formant speech synthesis. IETE Journal of Research, 34(1), 5–20.CrossRef
45.
Zurück zum Zitat Spanias, A. S. (1994). Speech coding: A tutorial review. Proceedings of the IEEE, 82(10), 1541–1582.CrossRef Spanias, A. S. (1994). Speech coding: A tutorial review. Proceedings of the IEEE, 82(10), 1541–1582.CrossRef
46.
Zurück zum Zitat Švec, J. G., Horáček, J., Šram, F., & Veselỳ, J. (2000). Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. The Journal of the Acoustical Society of America, 108(4), 1397–1407.CrossRef Švec, J. G., Horáček, J., Šram, F., & Veselỳ, J. (2000). Resonance properties of the vocal folds: In vivo laryngoscopic investigation of the externally excited laryngeal vibrations. The Journal of the Acoustical Society of America, 108(4), 1397–1407.CrossRef
47.
Zurück zum Zitat Ishizaka, K. (1988). Significance of Kaneko’s measurement of natural frequencies of the vocal folds. In O. Fujimura (Ed.), Vocal physiology: Voice production, mechanisms and functions (pp. 181–190). New York: AT&T Bell Laboratories, Raven Press. Ishizaka, K. (1988). Significance of Kaneko’s measurement of natural frequencies of the vocal folds. In O. Fujimura (Ed.), Vocal physiology: Voice production, mechanisms and functions (pp. 181–190). New York: AT&T Bell Laboratories, Raven Press.
48.
Zurück zum Zitat Zhang, Z. (2016). Mechanics of human voice production and control. The Journal of the Acoustical Society of America, 140(4), 2614–2635.CrossRef Zhang, Z. (2016). Mechanics of human voice production and control. The Journal of the Acoustical Society of America, 140(4), 2614–2635.CrossRef
49.
Zurück zum Zitat Rothenberg, M. (1973). A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. The Journal of the Acoustical Society of America, 53(6), 1632–1645.CrossRef Rothenberg, M. (1973). A new inverse-filtering technique for deriving the glottal air flow waveform during voicing. The Journal of the Acoustical Society of America, 53(6), 1632–1645.CrossRef
50.
Zurück zum Zitat Alku, P. (2011). Glottal inverse filtering analysis of human voice production - a review of estimation and parameterization methods of the glottal excitation and their applications. Sadhana, 36(5), 623–650.CrossRef Alku, P. (2011). Glottal inverse filtering analysis of human voice production - a review of estimation and parameterization methods of the glottal excitation and their applications. Sadhana, 36(5), 623–650.CrossRef
51.
Zurück zum Zitat Fant, G. (2012). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin: Walter de Gruyter. Fant, G. (2012). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin: Walter de Gruyter.
52.
Zurück zum Zitat Portnoff, M. R. (1973). A quasi-one-dimensional digital simulation for the time-varying vocal tract. Masters dissertation, Massachusetts Institute of Technology, Cambridge, USA. Portnoff, M. R. (1973). A quasi-one-dimensional digital simulation for the time-varying vocal tract. Masters dissertation, Massachusetts Institute of Technology, Cambridge, USA.
53.
Zurück zum Zitat Story, B. H. (2005). A parametric model of the vocal tract area function for vowel and consonant simulation. The Journal of the Acoustical Society of America, 117(5), 3231–3254.CrossRef Story, B. H. (2005). A parametric model of the vocal tract area function for vowel and consonant simulation. The Journal of the Acoustical Society of America, 117(5), 3231–3254.CrossRef
54.
Zurück zum Zitat Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals. Englewood Cliffs, New Jersey: Prentice-Hall. Rabiner, L. R., & Schafer, R. W. (1978). Digital processing of speech signals. Englewood Cliffs, New Jersey: Prentice-Hall.
55.
Zurück zum Zitat Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., et al. (2003). The CMU SPHINX-4 speech recognition system. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vol. 1, pp. 2–5). Hong Kong: IEEE. Lamere, P., Kwok, P., Gouvea, E., Raj, B., Singh, R., Walker, W., et al. (2003). The CMU SPHINX-4 speech recognition system. In Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP) (Vol. 1, pp. 2–5). Hong Kong: IEEE.
56.
Zurück zum Zitat Stevens, K. N. (2000). Acoustic phonetics. Cambridge, USA: MIT Press. Stevens, K. N. (2000). Acoustic phonetics. Cambridge, USA: MIT Press.
57.
Zurück zum Zitat Ladefoged, P., & Maddieson, I. (1996). The sounds of the world’s languages (Vol. 1012). Oxford, UK: Blackwell Publishers. Ladefoged, P., & Maddieson, I. (1996). The sounds of the world’s languages (Vol. 1012). Oxford, UK: Blackwell Publishers.
58.
Zurück zum Zitat Labov, W., Ash, S., & Boberg, C. (2005). The Atlas of North American English: Phonetics, phonology and sound change. Berlin: Walter de Gruyter. Labov, W., Ash, S., & Boberg, C. (2005). The Atlas of North American English: Phonetics, phonology and sound change. Berlin: Walter de Gruyter.
59.
Zurück zum Zitat Stevens, K. N. (2000). Diverse acoustic cues at consonantal landmarks. Phonetica, 57(2–4), 139–151.CrossRef Stevens, K. N. (2000). Diverse acoustic cues at consonantal landmarks. Phonetica, 57(2–4), 139–151.CrossRef
60.
Zurück zum Zitat Fant, G. (1960). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin, Germany: Walter de Gruyter. Fant, G. (1960). Acoustic theory of speech production: With calculations based on X-ray studies of Russian articulations (Vol. 2). Berlin, Germany: Walter de Gruyter.
61.
Zurück zum Zitat Saks, M. J., & Koehler, J. J. (2008). The individualization fallacy in forensic science evidence. Vanderbilt Law Review, 61(1), 197. Saks, M. J., & Koehler, J. J. (2008). The individualization fallacy in forensic science evidence. Vanderbilt Law Review, 61(1), 197.
62.
Zurück zum Zitat Page, M., Taylor, J., & Blenkin, M. (2011). Uniqueness in the forensic identification sciences - fact or fiction? Forensic Science International, 206(1–3), 12–18.CrossRef Page, M., Taylor, J., & Blenkin, M. (2011). Uniqueness in the forensic identification sciences - fact or fiction? Forensic Science International, 206(1–3), 12–18.CrossRef
64.
Zurück zum Zitat Jain, A. K., Prabhakar, S., & Pankanti, S. (2002). On the similarity of identical twin fingerprints. Pattern Recognition, 35(11), 2653–2663.CrossRef Jain, A. K., Prabhakar, S., & Pankanti, S. (2002). On the similarity of identical twin fingerprints. Pattern Recognition, 35(11), 2653–2663.CrossRef
65.
Zurück zum Zitat Sun, Z., Paulino, A. A., Feng, J., Chai, Z., Tan, T., & Jain, A. K. (2010). A study of multibiometric traits of identical twins. Biometric technology for human identification VII (Vol. 7667, p. 76670T). International Society for Optics and Photonics. Sun, Z., Paulino, A. A., Feng, J., Chai, Z., Tan, T., & Jain, A. K. (2010). A study of multibiometric traits of identical twins. Biometric technology for human identification VII (Vol. 7667, p. 76670T). International Society for Optics and Photonics.
66.
Zurück zum Zitat Van, W. G., Vercammen, J., & Debruyne, F. (2001). Voice similarity in identical twins. Acta Oto-Rhino-Laryngologica Belgica, 55(1), 49–55. Van, W. G., Vercammen, J., & Debruyne, F. (2001). Voice similarity in identical twins. Acta Oto-Rhino-Laryngologica Belgica, 55(1), 49–55.
67.
Zurück zum Zitat Loakes, D. (2006). A forensic phonetic investigation into the speech patterns of identical and non-identical twins. Doctoral dissertation, School of Languages, University of Melbourne, Australia. Loakes, D. (2006). A forensic phonetic investigation into the speech patterns of identical and non-identical twins. Doctoral dissertation, School of Languages, University of Melbourne, Australia.
68.
Zurück zum Zitat Koyama, T., Kawasaki, M., & Ogura, J. H. (1969). Mechanics of voice production. I. Regulation of vocal intensity. The Laryngoscope, 79(3), 337–354. Koyama, T., Kawasaki, M., & Ogura, J. H. (1969). Mechanics of voice production. I. Regulation of vocal intensity. The Laryngoscope, 79(3), 337–354.
69.
Zurück zum Zitat Von Békésy, G., & Wever, E. G. (1960). Experiments in hearing (Vol. 8). New York: McGraw-Hill. Von Békésy, G., & Wever, E. G. (1960). Experiments in hearing (Vol. 8). New York: McGraw-Hill.
70.
Zurück zum Zitat Reichenbach, T., & Hudspeth, A. J. (2014). The physics of hearing: Fluid mechanics and the active process of the inner ear. Reports on Progress in Physics, 77(7), 076601. Reichenbach, T., & Hudspeth, A. J. (2014). The physics of hearing: Fluid mechanics and the active process of the inner ear. Reports on Progress in Physics, 77(7), 076601.
71.
Zurück zum Zitat Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (Frequenzgruppen). The Journal of the Acoustical Society of America, 33(2), 248–248.CrossRef Zwicker, E. (1961). Subdivision of the audible frequency range into critical bands (Frequenzgruppen). The Journal of the Acoustical Society of America, 33(2), 248–248.CrossRef
72.
Zurück zum Zitat Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. Bell System Technical Journal, 12(4), 377–430.CrossRef Fletcher, H., & Munson, W. A. (1933). Loudness, its definition, measurement and calculation. Bell System Technical Journal, 12(4), 377–430.CrossRef
73.
Zurück zum Zitat Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. The Journal of the Acoustical Society of America, 88(1), 97–100.CrossRef Traunmüller, H. (1990). Analytical expressions for the tonotopic sensory scale. The Journal of the Acoustical Society of America, 88(1), 97–100.CrossRef
74.
Zurück zum Zitat Moore, B. C., & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. The Journal of the Acoustical Society of America, 74(3), 750–753.CrossRef Moore, B. C., & Glasberg, B. R. (1983). Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. The Journal of the Acoustical Society of America, 74(3), 750–753.CrossRef
75.
Zurück zum Zitat Fillon, T., & Prado, J. (2003). Evaluation of an ERB frequency scale noise reduction for hearing aids: A comparative study. Speech Communication, 39(1–2), 23–32.CrossRef Fillon, T., & Prado, J. (2003). Evaluation of an ERB frequency scale noise reduction for hearing aids: A comparative study. Speech Communication, 39(1–2), 23–32.CrossRef
76.
Zurück zum Zitat Smith, J. O., & Abel, J. S. (1999). Bark and ERB bilinear transforms. IEEE Transactions on Speech and Audio Processing, 7(6), 697–708.CrossRef Smith, J. O., & Abel, J. S. (1999). Bark and ERB bilinear transforms. IEEE Transactions on Speech and Audio Processing, 7(6), 697–708.CrossRef
77.
Zurück zum Zitat Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3), 185–190.CrossRef Stevens, S. S., Volkmann, J., & Newman, E. B. (1937). A scale for the measurement of the psychological magnitude pitch. The Journal of the Acoustical Society of America, 8(3), 185–190.CrossRef
78.
Zurück zum Zitat Holdsworth, J., Nimmo-Smith, I., Patterson, R., & Rice, P. (1988). Implementing a gammatone filter bank. Annex C of the SVOS Final Report: Part A: The Auditory Filterbank, 1, 1–5. Holdsworth, J., Nimmo-Smith, I., Patterson, R., & Rice, P. (1988). Implementing a gammatone filter bank. Annex C of the SVOS Final Report: Part A: The Auditory Filterbank, 1, 1–5.
79.
Zurück zum Zitat Lyon, R. F., Katsiamis, A. G., & Drakakis, E. M. (2010). History and future of auditory filter models. In Proceedings the International Symposium on Circuits and Systems (pp. 3809–3812). IEEE. Lyon, R. F., Katsiamis, A. G., & Drakakis, E. M. (2010). History and future of auditory filter models. In Proceedings the International Symposium on Circuits and Systems (pp. 3809–3812). IEEE.
80.
Zurück zum Zitat Greenwood, D. D. (1990). A cochlear frequency-position function for several species - 29 years later. The Journal of the Acoustical Society of America, 87(6), 2592–2605.CrossRef Greenwood, D. D. (1990). A cochlear frequency-position function for several species - 29 years later. The Journal of the Acoustical Society of America, 87(6), 2592–2605.CrossRef
81.
Zurück zum Zitat Zwicker, E., & Fastl, H. (2013). Psychoacoustics: Facts and models (Vol. 22). New York: Springer Science & Business Media. Zwicker, E., & Fastl, H. (2013). Psychoacoustics: Facts and models (Vol. 22). New York: Springer Science & Business Media.
82.
Zurück zum Zitat Flanagan, J. L. (2013). Speech analysis synthesis and perception (Vol. 3). New York: Springer Science & Business Media. Flanagan, J. L. (2013). Speech analysis synthesis and perception (Vol. 3). New York: Springer Science & Business Media.
83.
Zurück zum Zitat Mersky, B. L. (1991). Method and apparatus for endodontically augmenting hearing. U.S. Patent 5,033,999. Mersky, B. L. (1991). Method and apparatus for endodontically augmenting hearing. U.S. Patent 5,033,999.
84.
Zurück zum Zitat Winkworth, A. L., Davis, P. J., Adams, R. D., & Ellis, E. (1995). Breathing patterns during spontaneous speech. Journal of Speech, Language, and Hearing Research, 38(1), 124–144.CrossRef Winkworth, A. L., Davis, P. J., Adams, R. D., & Ellis, E. (1995). Breathing patterns during spontaneous speech. Journal of Speech, Language, and Hearing Research, 38(1), 124–144.CrossRef
85.
Zurück zum Zitat Loudon, R. G., Lee, L., & Holcomb, B. J. (1988). Volumes and breathing patterns during speech in healthy and asthmatic subjects. Journal of Speech, Language, and Hearing Research, 31(2), 219–227.CrossRef Loudon, R. G., Lee, L., & Holcomb, B. J. (1988). Volumes and breathing patterns during speech in healthy and asthmatic subjects. Journal of Speech, Language, and Hearing Research, 31(2), 219–227.CrossRef
86.
Zurück zum Zitat Bellemare, F., & Grassino, A. (1982). Effect of pressure and timing of contraction on human diaphragm fatigue. Journal of Applied Physiology, 53(5), 1190–1195.CrossRef Bellemare, F., & Grassino, A. (1982). Effect of pressure and timing of contraction on human diaphragm fatigue. Journal of Applied Physiology, 53(5), 1190–1195.CrossRef
87.
Zurück zum Zitat Pauluhn, J. (2006). Acute nose-only exposure of rats to phosgene. Part I: Concentration \(\times \) time dependence of LC50s, nonlethal-threshold concentrations, and analysis of breathing patterns. Inhalation Toxicology, 18(6), 423–435.CrossRef Pauluhn, J. (2006). Acute nose-only exposure of rats to phosgene. Part I: Concentration \(\times \) time dependence of LC50s, nonlethal-threshold concentrations, and analysis of breathing patterns. Inhalation Toxicology, 18(6), 423–435.CrossRef
88.
Zurück zum Zitat Lucía, A., Carvajal, A., Calderón, F. J., Alfonso, A., & Chicharro, J. L. (1999). Breathing pattern in highly competitive cyclists during incremental exercise. European Journal of Applied Physiology and Occupational Physiology, 79(6), 512–521.CrossRef Lucía, A., Carvajal, A., Calderón, F. J., Alfonso, A., & Chicharro, J. L. (1999). Breathing pattern in highly competitive cyclists during incremental exercise. European Journal of Applied Physiology and Occupational Physiology, 79(6), 512–521.CrossRef
Metadaten
Titel
Production and Perception of Voice
verfasst von
Rita Singh
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-8403-5_2

Neuer Inhalt