Skip to main content

2017 | OriginalPaper | Buchkapitel

Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps

verfasst von : Prabhanjan Ananth, Amit Sahai

Erschienen in: Advances in Cryptology – EUROCRYPT 2017

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, we propose a variant of functional encryption called projective arithmetic functional encryption (PAFE). Roughly speaking, our notion is like functional encryption for arithmetic circuits, but where secret keys only yield partially decrypted values. These partially decrypted values can be linearly combined with known coefficients and the result can be tested to see if it is a small value.
We give a degree-preserving construction of PAFE from multilinear maps. That is, we show how to achieve PAFE for arithmetic circuits of degree d using only degree-d multilinear maps. Our construction is based on an assumption over such multilinear maps, that we justify in a generic model. We then turn to applying our notion of PAFE to one of the most pressing open problems in the foundations of cryptography: building secure indistinguishability obfuscation (\(\mathsf {i}\mathcal {O}\)) from simpler building blocks.
\(\mathsf {i}\mathcal {O}\) from degree-5 multilinear maps. Recently, the works of Lin [Eurocrypt 2016] and Lin-Vaikuntanathan [FOCS 2016] showed how to build \(\mathsf {i}\mathcal {O}\) from constant-degree multilinear maps. However, no explicit constant was given in these works, and an analysis of these published works shows that the degree requirement would be in excess of 30. The ultimate “dream” goal of this line of work would be to reduce the degree requirement all the way to 2, allowing for the use of well-studied bilinear maps, or barring that, to a low constant that may be supportable by alternative secure low-degree multilinear map candidates. We make substantial progress toward this goal by showing how to leverage PAFE for degree-5 arithmetic circuits to achieve \(\mathsf {i}\mathcal {O}\), thus yielding the first \(\mathsf {i}\mathcal {O}\) construction from degree-5 multilinear maps.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We call our notion projective FE because, roughly speaking, a user holding a collection of keys \(\{ sk_C \}_C\) for several arithmetic circuits C can only learn information about various linear projections \(\sum _C \alpha _C C(x)\) for known small coefficients \(\{ \alpha _C \}_C\). We discuss this in more detail below. Our name is also loosely inspired by the notion of projective hash functions, introduced by Cramer and Shoup [CS02], where keys (called projective keys) only allow one to evaluate the hash function on inputs x in some NP language, but not on all strings. In our setting, as well, our keys are similarly only “partially functional” in that they only allow the user to learn information about various linear projections, and they do not in general reveal the full information that should be learned by obtaining all C(x) values. However, to the best of our knowledge, only this loose relationship exists between projective hash functions and our notion of projective FE.
 
2
We only are interested in arithmetic circuits of fan-in 2.
 
3
Roughly speaking, asymmetric multilinear maps disallows pairing of elements from the same group structure.
 
4
We additionally require that PAFE has encryption complexity to be multiplicative overhead in the message size. Our construction of PAFE satisfies this property.
 
5
The degree of a randomizing polynomial is defined to be the maximum degree of the polynomials computing the encoding function.
 
6
Randomness complexity in this context refers to the size of the random string used in the encoding algorithm.
 
7
That is, choice of every linear function could depend on the output of the previously chosen linear functions on the encoding of computation.
 
8
This idea is similar in spirit to the recent work of Bitansky et al. [BLP16], who introduced degree reduction techniques in a different context.
 
9
Here, \(\mu _i \otimes \mu _j\) denotes the tensoring of \(\mu _i\) and \(\mu _j\).
 
10
Their bootstrapping theorem also works if we start with FE for constant degree polynomials over \(\mathbb {F}_{2}\).
 
11
Note that, in particular, the security of their scheme reduces to a succinct assumption called the multilinear joint SXDH assumption. As we noted earlier, unfortunately this assumption is not known to be instantiable with existing multilinear map candidates. However, one can posit a different assumption that directly assumes their FE for \(NC^0\) scheme to be secure, and we do not know of any attacks on that (non-succinct) assumption.
 
12
As we see later, this corresponds to the scenario where the structured multilinear maps is associated with constant number of bilinear maps.
 
13
Note that every non leaf node is treated as a multiplication gate.
 
Literatur
Zurück zum Zitat Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2_35 Agrawal, S., Agrawal, S., Badrinarayanan, S., Kumarasubramanian, A., Prabhakaran, M., Sahai, A.: On the practical security of inner product functional encryption. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 777–798. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46447-2_​35
Zurück zum Zitat Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_21 CrossRef Applebaum, B., Brakerski, Z.: Obfuscating circuits via composite-order graded encoding. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 528–556. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46497-7_​21 CrossRef
Zurück zum Zitat Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46447-2_33 Abdalla, M., Bourse, F., Caro, A., Pointcheval, D.: Simple functional encryption schemes for inner products. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 733–751. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46447-2_​33
Zurück zum Zitat Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional encryption for inner product evaluations. IACR Cryptology ePrint Archive 2016:11 (2016) Abdalla, M., Bourse, F., De Caro, A., Pointcheval, D.: Better security for functional encryption for inner product evaluations. IACR Cryptology ePrint Archive 2016:11 (2016)
Zurück zum Zitat Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48000-7_32 CrossRef Ananth, P., Brakerski, Z., Segev, G., Vaikuntanathan, V.: From selective to adaptive security in functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 657–677. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-48000-7_​32 CrossRef
Zurück zum Zitat Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Comput. Compl. 15(2), 115–162 (2006)MathSciNetCrossRefMATH Applebaum, B., Ishai, Y., Kushilevitz, E.: Computationally private randomizing polynomials and their applications. Comput. Compl. 15(2), 115–162 (2006)MathSciNetCrossRefMATH
Zurück zum Zitat Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_15 CrossRef Ananth, P., Jain, A.: Indistinguishability obfuscation from compact functional encryption. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 308–326. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-47989-6_​15 CrossRef
Zurück zum Zitat Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguishability obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive 2015:730 (2015) Ananth, P., Jain, A., Sahai, A.: Achieving compactness generically: Indistinguishability obfuscation from non-compact functional encryption. IACR Cryptology ePrint Archive 2015:730 (2015)
Zurück zum Zitat Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. In: STOC, pp. 1087–1100 (2016) Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. In: STOC, pp. 1087–1100 (2016)
Zurück zum Zitat Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and Compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_30 CrossRef Boneh, D., Gentry, C., Gorbunov, S., Halevi, S., Nikolaenko, V., Segev, G., Vaikuntanathan, V., Vinayagamurthy, D.: Fully key-homomorphic encryption, arithmetic circuit ABE and Compact garbled circuits. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 533–556. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​30 CrossRef
Zurück zum Zitat Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.1007/3-540-44647-8_1 CrossRef Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S., Yang, K.: On the (im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001). doi:10.​1007/​3-540-44647-8_​1 CrossRef
Zurück zum Zitat Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: ITCS 2016 Bitansky, N., Goldwasser, S., Jain, A., Paneth, O., Vaikuntanathan, V., Waters, B.: Time-lock puzzles from randomized encodings. In: ITCS 2016
Zurück zum Zitat Boneh, D., Nikolaenko, V., Segev, G.: Attribute-based encryption for arithmetic circuits. IACR Cryptology ePrint Archive 2013:669 (2013) Boneh, D., Nikolaenko, V., Segev, G.: Attribute-based encryption for arithmetic circuits. IACR Cryptology ePrint Archive 2013:669 (2013)
Zurück zum Zitat Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_16 CrossRef Bitansky, N., Paneth, O.: ZAPs and non-interactive witness indistinguishability from indistinguishability obfuscation. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 401–427. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46497-7_​16 CrossRef
Zurück zum Zitat Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a Nash equilibrium. In: FOCS (2015) Bitansky, N., Paneth, O., Rosen, A.: On the cryptographic hardness of finding a Nash equilibrium. In: FOCS (2015)
Zurück zum Zitat Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46497-7_12 CrossRef Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46497-7_​12 CrossRef
Zurück zum Zitat Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE (S&P 2007), pp. 321–334 (2007) Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE (S&P 2007), pp. 321–334 (2007)
Zurück zum Zitat Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: FOCS, IEEE (2015) Bitansky, N., Vaikuntanathan, V.: Indistinguishability obfuscation from functional encryption. In: FOCS, IEEE (2015)
Zurück zum Zitat Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.1007/978-3-662-47989-6_12 CrossRef Coron, J.-S., Gentry, C., Halevi, S., Lepoint, T., Maji, H.K., Miles, E., Raykova, M., Sahai, A., Tibouchi, M.: Zeroizing without low-level zeroes: new MMAP attacks and their limitations. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 247–266. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-47989-6_​12 CrossRef
Zurück zum Zitat Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46800-5_1 Cheon, J.H., Han, K., Lee, C., Ryu, H., Stehlé, D.: Cryptanalysis of the multilinear map over the integers. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 3–12. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46800-5_​1
Zurück zum Zitat Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC (2016) Cohen, A., Holmgren, J., Nishimaki, R., Vaikuntanathan, V., Wichs, D.: Watermarking cryptographic capabilities. In: STOC (2016)
Zurück zum Zitat Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40084-1_29 CrossRef Caro, A., Iovino, V., Jain, A., O’Neill, A., Paneth, O., Persiano, G.: On the achievability of simulation-based security for functional encryption. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 519–535. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40084-1_​29 CrossRef
Zurück zum Zitat Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40041-4_26 CrossRef Coron, J.-S., Lepoint, T., Tibouchi, M.: Practical multilinear maps over the integers. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 476–493. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-40041-4_​26 CrossRef
Zurück zum Zitat Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.1007/3-540-46035-7_4 CrossRef Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi:10.​1007/​3-540-46035-7_​4 CrossRef
Zurück zum Zitat Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49384-7_7 CrossRef Datta, P., Dutta, R., Mukhopadhyay, S.: Functional encryption for inner product with full function privacy. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 164–195. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49384-7_​7 CrossRef
Zurück zum Zitat Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_32 CrossRef Goldwasser, S., Gordon, S.D., Goyal, V., Jain, A., Katz, J., Liu, F.-H., Sahai, A., Shi, E., Zhou, H.-S.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​32 CrossRef
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38348-9_1 CrossRef Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013). doi:10.​1007/​978-3-642-38348-9_​1 CrossRef
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013) Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49 (2013)
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54242-8_4 CrossRef Garg, S., Gentry, C., Halevi, S., Raykova, M.: Two-round secure MPC from indistinguishability obfuscation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 74–94. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-54242-8_​4 CrossRef
Zurück zum Zitat Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryption from multilinear maps. IACR Cryptology ePrint Archive 2014:622 (2014) Garg, S., Gentry, C., Halevi, S., Zhandry, M.: Fully secure attribute based encryption from multilinear maps. IACR Cryptology ePrint Archive 2014:622 (2014)
Zurück zum Zitat Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: FOCS, pp. 151–170 (2015) Gentry, C., Lewko, A.B., Sahai, A., Waters, B.: Indistinguishability obfuscation from the multilinear subgroup elimination assumption. In: FOCS, pp. 151–170 (2015)
Zurück zum Zitat Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATH Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)MathSciNetCrossRefMATH
Zurück zum Zitat Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS (2006) Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM CCS (2006)
Zurück zum Zitat Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014). doi:10.1007/978-3-642-55220-5_12 CrossRef Hohenberger, S., Sahai, A., Waters, B.: Replacing a random oracle: full domain hash from indistinguishability obfuscation. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 201–220. Springer, Heidelberg (2014). doi:10.​1007/​978-3-642-55220-5_​12 CrossRef
Zurück zum Zitat Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000) Ishai, Y., Kushilevitz, E.: Randomizing polynomials: a new representation with applications to round-efficient secure computation. In: FOCS, pp. 294–304 (2000)
Zurück zum Zitat Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78967-3_9 CrossRef Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). doi:10.​1007/​978-3-540-78967-3_​9 CrossRef
Zurück zum Zitat Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi:10.1007/978-3-662-49890-3_2 CrossRef Lin, H.: Indistinguishability obfuscation from constant-degree graded encoding schemes. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 28–57. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-49890-3_​2 CrossRef
Zurück zum Zitat Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13190-5_4 CrossRef Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010). doi:10.​1007/​978-3-642-13190-5_​4 CrossRef
Zurück zum Zitat Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In FOCS (2016) Lin, H., Vaikuntanathan, V.: Indistinguishability obfuscation from DDH-like assumptions on constant-degree graded encodings. In FOCS (2016)
Zurück zum Zitat Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53008-5_22 CrossRef Miles, E., Sahai, A., Zhandry, M.: Annihilation attacks for multilinear maps: cryptanalysis of indistinguishability obfuscation over GGH13. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 629–658. Springer, Heidelberg (2016). doi:10.​1007/​978-3-662-53008-5_​22 CrossRef
Zurück zum Zitat Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85538-5_4 CrossRef Okamoto, T., Takashima, K.: Homomorphic encryption and signatures from vector decomposition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 57–74. Springer, Heidelberg (2008). doi:10.​1007/​978-3-540-85538-5_​4 CrossRef
Zurück zum Zitat O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial stretch. In: CCC, pp. 1–12 (2014) O’Donnell, R., Witmer, D.: Goldreich’s PRG: evidence for near-optimal polynomial stretch. In: CCC, pp. 1–12 (2014)
Zurück zum Zitat Sahai, A., Waters, B.: Slides on functional encryption. Powerpoint presentation (2008) Sahai, A., Waters, B.: Slides on functional encryption. Powerpoint presentation (2008)
Zurück zum Zitat Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In STOC, pp. 475–484 (2014) Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In STOC, pp. 475–484 (2014)
Zurück zum Zitat Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46803-6_15 Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015). doi:10.​1007/​978-3-662-46803-6_​15
Metadaten
Titel
Projective Arithmetic Functional Encryption and Indistinguishability Obfuscation from Degree-5 Multilinear Maps
verfasst von
Prabhanjan Ananth
Amit Sahai
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-56620-7_6