Skip to main content

2021 | OriginalPaper | Buchkapitel

Prospect of a Fully Solar Energy-Driven Compact Cold Store for Low Income Farming Communities

verfasst von : Sachindra Kumar Rout, Madhu Kalyan Reddy Pulagam, Sunil Kr Sarangi

Erschienen in: Advances in Air Conditioning and Refrigeration

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Unlike industrially developed economies, weaker societies lack infrastructure for transportation and storage of agricultural produce. This leads to demand for many small cold store facilities distributed widely, instead of a few large and energy-efficient units. Solar energy gives a clean and environment-friendly option for meeting this need; but solar energy is available only for about a third of the day, leaving a challenge to save applications needing round the clock air conditioning. Recently (2015), a new technology has been proposed by Al-Ugla et al. [1] of Saudi Arabia to circumvent the problem by employing a modified vapour absorption refrigeration cycle. The authors have shown on the basis of theoretical modelling that it is feasible to design and build a modified vapour absorption refrigerator that will provide 24 h cooling without storing the refrigerating effect below room temperature. The proposed system is expected to be compact in volume and economical to operate. We are on the path of developing a practical cold store to store about 5 tonnes potato or equivalent quantity of other produce in rural setting at moderately low temperature. The system is based on the classical LiBr/H2O absorption refrigeration cycle, the heat supply being given by solar power. Night operation is implemented by providing extra storage tanks to save rich mixture, lean mixture and pure water when solar heat is no more available for generating the refrigerant from the rich mixture. A vapour absorption refrigeration process is similar to the more common vapour compression system except that the mechanical compressor of the latter is replaced by an absorption-pumping-desorption process to achieve the objective of increasing the density, and consequently the pressure of the refrigerant. A common chemical system consists of LiBr and H2O, the latter being the refrigerant and LiBr the absorbent, and the process is illustrated in Fig. 1. While the vapour absorption cycle is well established, particularly, for generating refrigerating effect using low-grade heat or solar radiation, the focus of our project is to create a system that saves potential refrigerating effect (not a cold fluid) for use during night hours. The innovation introduced by Al-Ugla et al. revolves around extending the duration of operation by adding three secondary storage tanks—one for the strong (more water) solution, one for the weak (more LiBr) solution and one for the pure refrigerant (water), connected in parallel with the respective primary containers. During the daylight hours, the normal vapour absorption process, running in solar heat, produces the required cooling effect and excess amount of poor (weak) solution and pure refrigerant (water) which is stored in separate tanks for later use. This system should be distinguished from competing refrigeration storage systems where cooling effect is stored for the night either in the form of excess chilled water or in the form of solidified phase change material. The latter materials are bulky and expensive. In contrast, the proposed system stores the strong and weak solutions in separate tanks, with very high effective cooling capacities. The resulting secondary tanks are small, light and inexpensive. The machine will operate with 70 °C as evaporator temperature and 90 °C as generator temperature. The solar collector size is around 24 m2 for 24 h run. The major challenge is to maintain vacuum inside the system. In summary, the system proposed, herein it is characterized by the following features. (a) No external supply of electricity (grid connection) not necessary, (b) 24-hour operation (including night hours). (c) Based on vapour absorption cycle using LiBr as absorbent and water as refrigerant. (d) No expensive refrigerant or phase change material involved, nor there is a need for a large reservoir for storing refrigeration effect. (e) Small solar PV unit (200 W) with battery to power the three magnet-linked liquid pumps. The system is under development in our HVAC laboratory. Theoretical design is ongoing and results will be presented in the conference. A cost comparison between the system under development and two competing conventional systems (grid connected and solar PV + Battery) will be presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Basu DN, Ganguly A (2016) Solar thermal–photovoltaic powered potato cold storage—conceptual design and performance analyses. Appl Energy 165:308–317CrossRef Basu DN, Ganguly A (2016) Solar thermal–photovoltaic powered potato cold storage—conceptual design and performance analyses. Appl Energy 165:308–317CrossRef
3.
Zurück zum Zitat Nakahara N, Miyakawa Y, Yamamoto M (1977) Experimental study on house cooling and heating with solar energy using flat plate collector. Sol Energy 19(6):657–662CrossRef Nakahara N, Miyakawa Y, Yamamoto M (1977) Experimental study on house cooling and heating with solar energy using flat plate collector. Sol Energy 19(6):657–662CrossRef
4.
Zurück zum Zitat Yeung MR et al (1992) Performance of a solar-powered air conditioning system in Hong Kong. Sol Energy 48(5):309–319CrossRef Yeung MR et al (1992) Performance of a solar-powered air conditioning system in Hong Kong. Sol Energy 48(5):309–319CrossRef
5.
Zurück zum Zitat Li ZF, Sumathy K (2001) Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank. Sol Energy 71(5):285–297CrossRef Li ZF, Sumathy K (2001) Experimental studies on a solar powered air conditioning system with partitioned hot water storage tank. Sol Energy 71(5):285–297CrossRef
6.
Zurück zum Zitat Praene JP et al (2011) Simulation and experimental investigation of solar absorption cooling system in Reunion Island. Appl Energy 88(3):831–839CrossRef Praene JP et al (2011) Simulation and experimental investigation of solar absorption cooling system in Reunion Island. Appl Energy 88(3):831–839CrossRef
7.
Zurück zum Zitat Romero RJ et al (2001) Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide. Sol Energy Mater Sol Cells 70(3):301–308CrossRef Romero RJ et al (2001) Comparison of the modeling of a solar absorption system for simultaneous cooling and heating operating with an aqueous ternary hydroxide and with water/lithium bromide. Sol Energy Mater Sol Cells 70(3):301–308CrossRef
8.
Zurück zum Zitat Gutiérrez F (1988) Behavior of a household absorption-diffusion refrigerator adapted to autonomous solar operation. Sol Energy 40(1):17–23MathSciNetCrossRef Gutiérrez F (1988) Behavior of a household absorption-diffusion refrigerator adapted to autonomous solar operation. Sol Energy 40(1):17–23MathSciNetCrossRef
9.
Zurück zum Zitat Jakob U et al (2008) Simulation and experimental investigation into diffusion absorption cooling machines for air-conditioning applications. Appl Therm Eng 28(10):1138–1150CrossRef Jakob U et al (2008) Simulation and experimental investigation into diffusion absorption cooling machines for air-conditioning applications. Appl Therm Eng 28(10):1138–1150CrossRef
10.
Zurück zum Zitat Worsøe-Schmidt P (1979) A solar-powered solid-absorption refrigeration system. Int J Refrig 2(2):75–84CrossRef Worsøe-Schmidt P (1979) A solar-powered solid-absorption refrigeration system. Int J Refrig 2(2):75–84CrossRef
11.
Zurück zum Zitat Erhard A, Hahne E (1997) Test and simulation of a solar-powered absorption cooling machine. Sol Energy 59(4):155–162CrossRef Erhard A, Hahne E (1997) Test and simulation of a solar-powered absorption cooling machine. Sol Energy 59(4):155–162CrossRef
12.
Zurück zum Zitat Rivera CO, Rivera W (2003) Modeling of an intermittent solar absorption refrigeration system operating with ammonia–lithium nitrate mixture. Sol Energy Mater Sol Cells 76(3):417–427CrossRef Rivera CO, Rivera W (2003) Modeling of an intermittent solar absorption refrigeration system operating with ammonia–lithium nitrate mixture. Sol Energy Mater Sol Cells 76(3):417–427CrossRef
13.
Zurück zum Zitat Steiu S et al (2009) A basis for the development of new ammonia–water–sodium hydroxide absorption chillers. Int J Refrig 32(4):577–587CrossRef Steiu S et al (2009) A basis for the development of new ammonia–water–sodium hydroxide absorption chillers. Int J Refrig 32(4):577–587CrossRef
14.
Zurück zum Zitat Bansal NK et al (1997) Performance testing and evaluation of solid absorption solar cooling unit. Sol Energy 61(2):127–140CrossRef Bansal NK et al (1997) Performance testing and evaluation of solid absorption solar cooling unit. Sol Energy 61(2):127–140CrossRef
15.
Zurück zum Zitat Medrano M, Bourouis M, Coronas A (2001) Double-lift absorption refrigeration cycles driven by low–temperature heat sources using organic fluid mixtures as working pairs. Appl Energy 68(2):173–185CrossRef Medrano M, Bourouis M, Coronas A (2001) Double-lift absorption refrigeration cycles driven by low–temperature heat sources using organic fluid mixtures as working pairs. Appl Energy 68(2):173–185CrossRef
16.
Zurück zum Zitat Sethu MR, Kumar A, Yardi NR (1986) Design, installation & performance of a 10 TR solar powered cold storage in India. In: Bilgen E, Hollands KGT (eds) Intersol eighty five. Pergamon, Oxford, pp 1013–1017 Sethu MR, Kumar A, Yardi NR (1986) Design, installation & performance of a 10 TR solar powered cold storage in India. In: Bilgen E, Hollands KGT (eds) Intersol eighty five. Pergamon, Oxford, pp 1013–1017
17.
Zurück zum Zitat Yuan H, Zhou P, Mei N (2015) Performance analysis of a solar-assisted OTEC cycle for power generation and fishery cold storage refrigeration. Appl Therm Eng 90:809–819CrossRef Yuan H, Zhou P, Mei N (2015) Performance analysis of a solar-assisted OTEC cycle for power generation and fishery cold storage refrigeration. Appl Therm Eng 90:809–819CrossRef
18.
Zurück zum Zitat Cui B et al (2015) Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications. Appl Energy 147:523–535CrossRef Cui B et al (2015) Effectiveness and life-cycle cost-benefit analysis of active cold storages for building demand management for smart grid applications. Appl Energy 147:523–535CrossRef
19.
Zurück zum Zitat Bao HS et al (2012) Resorption system for cold storage and long-distance refrigeration. Appl Energy 93:479–487CrossRef Bao HS et al (2012) Resorption system for cold storage and long-distance refrigeration. Appl Energy 93:479–487CrossRef
20.
Zurück zum Zitat Shi XJ, Zhang P (2013) A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system. Appl Energy 112:1393–1402CrossRef Shi XJ, Zhang P (2013) A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system. Appl Energy 112:1393–1402CrossRef
21.
Zurück zum Zitat Melone L et al (2012) Phase change material cellulosic composites for the cold storage of perishable products: From material preparation to computational evaluation. Appl Energy 89(1):339–346CrossRef Melone L et al (2012) Phase change material cellulosic composites for the cold storage of perishable products: From material preparation to computational evaluation. Appl Energy 89(1):339–346CrossRef
22.
Zurück zum Zitat Castell A et al (2011) Maximisation of heat transfer in a coil in tank PCM cold storage system. Appl Energy 88(11):4120–4127CrossRef Castell A et al (2011) Maximisation of heat transfer in a coil in tank PCM cold storage system. Appl Energy 88(11):4120–4127CrossRef
23.
Zurück zum Zitat Martin V, He B, Setterwall F (2010) Direct contact PCM–water cold storage. Appl Energy 87(8):2652–2659CrossRef Martin V, He B, Setterwall F (2010) Direct contact PCM–water cold storage. Appl Energy 87(8):2652–2659CrossRef
24.
Zurück zum Zitat Oró E et al (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533CrossRef Oró E et al (2012) Review on phase change materials (PCMs) for cold thermal energy storage applications. Appl Energy 99:513–533CrossRef
25.
Zurück zum Zitat Osterman E, Butala V, Stritih U (2015) PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy Build 106:125–133CrossRef Osterman E, Butala V, Stritih U (2015) PCM thermal storage system for ‘free’ heating and cooling of buildings. Energy Build 106:125–133CrossRef
26.
Zurück zum Zitat Al-Ugla AA, El-Shaarawi MAI, Said SAM (2015) Alternative designs for a 24-hours operating solar-powered LiBr–water absorption air-conditioning technology. Int J Refrig 53(Supplement C):90–100 Al-Ugla AA, El-Shaarawi MAI, Said SAM (2015) Alternative designs for a 24-hours operating solar-powered LiBr–water absorption air-conditioning technology. Int J Refrig 53(Supplement C):90–100
Metadaten
Titel
Prospect of a Fully Solar Energy-Driven Compact Cold Store for Low Income Farming Communities
verfasst von
Sachindra Kumar Rout
Madhu Kalyan Reddy Pulagam
Sunil Kr Sarangi
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-6360-7_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.