Skip to main content

2011 | OriginalPaper | Buchkapitel

21. Protein Interaction Networks: Protein Domain Interaction and Protein Function Prediction

verfasst von : Yanjun Qi, William Stafford Noble

Erschienen in: Handbook of Statistical Bioinformatics

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most of a cell’s functional processes involve interactions among proteins, and a key challenge in proteomics is to better understand these complex interaction graphs at a systems level. Because of their importance in development and disease, protein-protein interactions (PPIs) have been the subject of intense research in recent years. In addition, a greater understanding of PPIs can be achieved through the detailed investigation of the protein domain interactions which mediate PPIs. In this chapter, we describe recent efforts to predict interactions between proteins and between protein domains. We also describe methods that attempt to use protein interaction data to infer protein function. Protein-protein interactions directly contribute to protein functions, and implications about functions can often be made via PPI studies. These inferences are based on the premise that the function of a protein may be discovered by studying its interaction with one or more proteins of known functions. The second part of this chapter reviews recent computational approaches to predict protein functions from PPI networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abraham, I., Bartal, Y., Neimany, O. (2006). Advances in metric embedding theory. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (pp. 271–286). New York, NY, USA: ACM. Abraham, I., Bartal, Y., Neimany, O. (2006). Advances in metric embedding theory. In STOC ’06: Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (pp. 271–286). New York, NY, USA: ACM.
2.
Zurück zum Zitat Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 1981–2014.MATH Airoldi, E. M., Blei, D. M., Fienberg, S. E., & Xing, E. P. (2008). Mixed membership stochastic blockmodels. Journal of Machine Learning Research, 9, 1981–2014.MATH
3.
Zurück zum Zitat Arnau, V., Mars, S., & Marin, I. (2005). Iterative cluster analysis of protein interaction data. Bioinformatics, 21(3), 364–378.CrossRef Arnau, V., Mars, S., & Marin, I. (2005). Iterative cluster analysis of protein interaction data. Bioinformatics, 21(3), 364–378.CrossRef
4.
Zurück zum Zitat Bader, G. D., & Hogue, C. W. (2003). Analyzing yeast protein-protein interaction data obtained from different sources. Nature Biotechnology, 20(10), 991–997.CrossRef Bader, G. D., & Hogue, C. W. (2003). Analyzing yeast protein-protein interaction data obtained from different sources. Nature Biotechnology, 20(10), 991–997.CrossRef
5.
Zurück zum Zitat Bader, J., Chaudhuri, A., Rothberg, J., & Chant, J. (2004). Gaining confidence in high-throughput protein interaction networks. Nature Biotechnology, 22(1), 78–85.CrossRef Bader, J., Chaudhuri, A., Rothberg, J., & Chant, J. (2004). Gaining confidence in high-throughput protein interaction networks. Nature Biotechnology, 22(1), 78–85.CrossRef
6.
Zurück zum Zitat Ben-Hur, A., & Noble, W. (2005). Kernel methods for predicting protein-protein interactions. Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference), 21, i38–i46. Ben-Hur, A., & Noble, W. (2005). Kernel methods for predicting protein-protein interactions. Bioinformatics (Proceedings of the Intelligent Systems for Molecular Biology Conference), 21, i38–i46.
7.
Zurück zum Zitat Ben-Hur, A., & Noble, W. (2006). Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics, 20(Suppl. 1), S2.CrossRef Ben-Hur, A., & Noble, W. (2006). Choosing negative examples for the prediction of protein-protein interactions. BMC Bioinformatics, 20(Suppl. 1), S2.CrossRef
9.
Zurück zum Zitat Blum, A. (2004). Semi-supervised learning using randomized mincuts. In ICML ’04: Proceedings of the twenty-first international conference on Machine learning. Banff, Albert, Canada. Blum, A. (2004). Semi-supervised learning using randomized mincuts. In ICML ’04: Proceedings of the twenty-first international conference on Machine learning. Banff, Albert, Canada.
10.
Zurück zum Zitat Braun, P., Tasan, M., Dreze, M., Barrios-Rodiles, M., Lemmens, I., Yu, H., Sahalie, J. M., Murray, R. R., Roncari, L., de Smet, A. S., Venkatesan, K., Rual, J. F., Vandenhaute, J., Cusick, M. E., Pawson, T., Hill, D. E., Tavernier, J., Wrana, J. L., Roth, F. P., & Vidal, M. (2009). An experimentally derived confidence score for binary protein-protein interactions. Nature Methods, 6(1), 91–97. DOI10.1038/nmeth.1281. Retrieved from URL http://dx.doi.org/10.1038/nmeth.1281. Braun, P., Tasan, M., Dreze, M., Barrios-Rodiles, M., Lemmens, I., Yu, H., Sahalie, J. M., Murray, R. R., Roncari, L., de Smet, A. S., Venkatesan, K., Rual, J. F., Vandenhaute, J., Cusick, M. E., Pawson, T., Hill, D. E., Tavernier, J., Wrana, J. L., Roth, F. P., & Vidal, M. (2009). An experimentally derived confidence score for binary protein-protein interactions. Nature Methods, 6(1), 91–97. DOI10.1038/nmeth.1281. Retrieved from URL http://​dx.​doi.​org/​10.​1038/​nmeth.​1281.
11.
Zurück zum Zitat Carroll, S., & Pavlovic, V. (2006). Protein classification using probabilistic chain graphs and the gene ontology structure. Bioinformatics, 22, 1871–1878.CrossRef Carroll, S., & Pavlovic, V. (2006). Protein classification using probabilistic chain graphs and the gene ontology structure. Bioinformatics, 22, 1871–1878.CrossRef
12.
Zurück zum Zitat Chapelle, O., Schölkopf, B., & Zien, A. (eds.). (2006). Semi-supervised learning. Adaptive computation and machine learning. Cambridge: MIT. Chapelle, O., Schölkopf, B., & Zien, A. (eds.). (2006). Semi-supervised learning. Adaptive computation and machine learning. Cambridge: MIT.
13.
Zurück zum Zitat Chia, J. M., & Kolatkar, P. R. (2004). Implications for domain fusion protein-protein interactions based on structural information. BMC Bioinformatics, 5, 161.CrossRef Chia, J. M., & Kolatkar, P. R. (2004). Implications for domain fusion protein-protein interactions based on structural information. BMC Bioinformatics, 5, 161.CrossRef
14.
Zurück zum Zitat Consortium, T. G. O. (2000). Gene ontology: tool for the unification of biology. Nature Genetics, 25, 25–29.CrossRef Consortium, T. G. O. (2000). Gene ontology: tool for the unification of biology. Nature Genetics, 25, 25–29.CrossRef
15.
Zurück zum Zitat Cusick, M. E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A. R., Simonis, N., Rual, J. F., Borick, H., Braun, P., Dreze, M., Vandenhaute, J., Galli, M., Yazaki, J., Hill, D. E., Ecker, J. R., Roth, F. P., & Vidal, M. (2009). Literature-curated protein interaction datasets. Nature Methods, 6(1), 39–46. DOI10.1038/nmeth.1284. Retrieved from URL http://dx.doi.org/10.1038/nmeth.1284. Cusick, M. E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A. R., Simonis, N., Rual, J. F., Borick, H., Braun, P., Dreze, M., Vandenhaute, J., Galli, M., Yazaki, J., Hill, D. E., Ecker, J. R., Roth, F. P., & Vidal, M. (2009). Literature-curated protein interaction datasets. Nature Methods, 6(1), 39–46. DOI10.1038/nmeth.1284. Retrieved from URL http://​dx.​doi.​org/​10.​1038/​nmeth.​1284.
16.
17.
Zurück zum Zitat Deng, M., Chen, T., & Sun, F. (2004). An integrated probabilistic model for functional prediction of proteins. Journal of Computational Biology, 11(2–3), 463–475.CrossRef Deng, M., Chen, T., & Sun, F. (2004). An integrated probabilistic model for functional prediction of proteins. Journal of Computational Biology, 11(2–3), 463–475.CrossRef
18.
Zurück zum Zitat Deng, M., Mehta, S., Sun, F., & Chen, T. (2002). Inferring domain-domain interactions from protein-protein interactions. Genome Research, 12(10), 1540–1548. Their method is actually an EM-based MLE. Deng, M., Mehta, S., Sun, F., & Chen, T. (2002). Inferring domain-domain interactions from protein-protein interactions. Genome Research, 12(10), 1540–1548. Their method is actually an EM-based MLE.
19.
Zurück zum Zitat Deng, M., Zhang, K., Mehta, S., Chen, T., & Sun, F. (2003). Prediction of protein function using protein-protein interaction data. Journal of Computational Biology, 10(6), 947–960.CrossRef Deng, M., Zhang, K., Mehta, S., Chen, T., & Sun, F. (2003). Prediction of protein function using protein-protein interaction data. Journal of Computational Biology, 10(6), 947–960.CrossRef
21.
Zurück zum Zitat Espadaler, J., Romero-Isart, O., Jackson, R., & Oliva, B. (2005). Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics, 21(16), 3360–3368.CrossRef Espadaler, J., Romero-Isart, O., Jackson, R., & Oliva, B. (2005). Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics, 21(16), 3360–3368.CrossRef
22.
Zurück zum Zitat Faloutsos, C., Miller, G., & Tsourakakis, C. (2009). Large graph-mining: Power tools and a practitioner’s guide. The 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Paris, June 28–July 2, 2009. Faloutsos, C., Miller, G., & Tsourakakis, C. (2009). Large graph-mining: Power tools and a practitioner’s guide. The 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Paris, June 28–July 2, 2009.
23.
Zurück zum Zitat Gavin, A., Aloy, P., Grandi, P., et al. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631–636.CrossRef Gavin, A., Aloy, P., Grandi, P., et al. (2006). Proteome survey reveals modularity of the yeast cell machinery. Nature, 440(7084), 631–636.CrossRef
24.
25.
Zurück zum Zitat Getoor, L., & Diehl, C. (2005). Link mining: A survey. SIGKDD Explorations, 7(2), 3–12.CrossRef Getoor, L., & Diehl, C. (2005). Link mining: A survey. SIGKDD Explorations, 7(2), 3–12.CrossRef
26.
Zurück zum Zitat Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. Cambridge, MA: MIT.MATH Getoor, L., & Taskar, B. (2007). Introduction to statistical relational learning. Cambridge, MA: MIT.MATH
27.
Zurück zum Zitat Gomez, S., Noble, W., & Rzhetsky, A. (2003). Learning to predict protein-protein interactions from protein sequences. Bioinformatics, 19(15), 1875–1881.CrossRef Gomez, S., Noble, W., & Rzhetsky, A. (2003). Learning to predict protein-protein interactions from protein sequences. Bioinformatics, 19(15), 1875–1881.CrossRef
28.
Zurück zum Zitat Gomez, S. M., Noble, W. S., & Rzhetsky, A. (2003). Learning to predict protein-protein interactions. Bioinformatics, 19, 1875–1881.CrossRef Gomez, S. M., Noble, W. S., & Rzhetsky, A. (2003). Learning to predict protein-protein interactions. Bioinformatics, 19, 1875–1881.CrossRef
29.
Zurück zum Zitat Guan, Y., Myers, C. L., Hess, D. C., Barutcuoglu, Z., Caudy, A. A., & Troyanskaya, O. G. (2008). Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology, 9(Suppl. 1), S3. DOI10.1186/gb-2008-9-s1-s3. Retrieved from URL http://dx.doi.org/10.1186/gb-2008-9-s1-s3. Guan, Y., Myers, C. L., Hess, D. C., Barutcuoglu, Z., Caudy, A. A., & Troyanskaya, O. G. (2008). Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology, 9(Suppl. 1), S3. DOI10.1186/gb-2008-9-s1-s3. Retrieved from URL http://​dx.​doi.​org/​10.​1186/​gb-2008-9-s1-s3.
30.
Zurück zum Zitat Han, D., Kim, H. S., Seo, J., & Jang, W. (2003). A domain combination based probabilistic framework for protein-protein interaction prediction. Genome Information, 14, 250–259. Han, D., Kim, H. S., Seo, J., & Jang, W. (2003). A domain combination based probabilistic framework for protein-protein interaction prediction. Genome Information, 14, 250–259.
31.
Zurück zum Zitat Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., & Takagi, T. (2001). Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast, 18(6), 523–531. DOI10.1002/yea.706. Retrieved from URL http://dx.doi.org/10.1002/yea.706. Hishigaki, H., Nakai, K., Ono, T., Tanigami, A., & Takagi, T. (2001). Assessment of prediction accuracy of protein function from protein–protein interaction data. Yeast, 18(6), 523–531. DOI10.1002/yea.706. Retrieved from URL http://​dx.​doi.​org/​10.​1002/​yea.​706.
32.
Zurück zum Zitat Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415(6868), 180–183. Retrieved from URL http://dx.doi.org/10.1038/415180a. Ho, Y., Gruhler, A., Heilbut, A., Bader, G. D., Moore, L., Adams, S. L., et al. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 415(6868), 180–183. Retrieved from URL http://​dx.​doi.​org/​10.​1038/​415180a.
33.
Zurück zum Zitat Huang, C., Morcos, F., Kanaan, S. P., Wuchty, S., Chen, D. Z., & Izaguirre, J. A. (2007). Predicting protein-protein interactions from protein domains using a set cover approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(1), 78–87. DOI10.1109/TCBB.2007.1001. Retrieved from URL http://dx.doi.org/10.1109/TCBB.2007.1001. Huang, C., Morcos, F., Kanaan, S. P., Wuchty, S., Chen, D. Z., & Izaguirre, J. A. (2007). Predicting protein-protein interactions from protein domains using a set cover approach. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 4(1), 78–87. DOI10.1109/TCBB.2007.1001. Retrieved from URL http://​dx.​doi.​org/​10.​1109/​TCBB.​2007.​1001.
34.
Zurück zum Zitat Ingolfsson, H., & Yona, G. (2008). Protein domain prediction. Methods in Molecular Biology, 426, 117–143.CrossRef Ingolfsson, H., & Yona, G. (2008). Protein domain prediction. Methods in Molecular Biology, 426, 117–143.CrossRef
35.
Zurück zum Zitat Iqbal, M., Freitas, A. A., Johnson, C. G., & Vergassola, M. (2008). Message-passing algorithms for the prediction of protein domain interactions from protein-protein interaction data. Bioinformatics, 24(18), 2064–2070. DOI10.1093/bioinformatics/btn366. Iqbal, M., Freitas, A. A., Johnson, C. G., & Vergassola, M. (2008). Message-passing algorithms for the prediction of protein domain interactions from protein-protein interaction data. Bioinformatics, 24(18), 2064–2070. DOI10.1093/bioinformatics/btn366.
36.
Zurück zum Zitat Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast proteininteractome. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4569–4574. Retrieved from URL http://www.pnas.org/cgi/content/full/98/8/4569. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., & Sakaki, Y. (2001). A comprehensive two-hybrid analysis to explore the yeast proteininteractome. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4569–4574. Retrieved from URL http://​www.​pnas.​org/​cgi/​content/​full/​98/​8/​4569.
37.
Zurück zum Zitat Jaimovich, A., Elidan, G., Margalit, H., & Friedman, N. (2006). Towards an integrated protein-protein interaction network: A relational markov network approach. Journal of Computational Biology, 13(2), 145–164.MathSciNetCrossRef Jaimovich, A., Elidan, G., Margalit, H., & Friedman, N. (2006). Towards an integrated protein-protein interaction network: A relational markov network approach. Journal of Computational Biology, 13(2), 145–164.MathSciNetCrossRef
38.
Zurück zum Zitat Jansen, R., & Gerstein, M. (2004). Analyzing protein function on a genomic scale: The importance of gold-standard positives and negatives for network prediction. Current Opinion in Microbiology, 7, 535–545.CrossRef Jansen, R., & Gerstein, M. (2004). Analyzing protein function on a genomic scale: The importance of gold-standard positives and negatives for network prediction. Current Opinion in Microbiology, 7, 535–545.CrossRef
39.
Zurück zum Zitat Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., Emili, A., Snyder, M., Greenblatt, J. F., & Gerstein, M. (2003). A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302, 449–453.CrossRef Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N. J., Chung, S., Emili, A., Snyder, M., Greenblatt, J. F., & Gerstein, M. (2003). A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science, 302, 449–453.CrossRef
40.
Zurück zum Zitat Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). String 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37(Database issue), D412–D416. DOI10.1093/nar/gkn760. Retrieved from URL http://dx.doi.org/10.1093/nar/gkn760. Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). String 8–a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37(Database issue), D412–D416. DOI10.1093/nar/gkn760. Retrieved from URL http://​dx.​doi.​org/​10.​1093/​nar/​gkn760.
41.
Zurück zum Zitat Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., & Kasif, S. (2004). Whole-genome annotation by using evidence integration in functional-linkage networks. Proceedings of the National Academy of Sciences of the United States America, 101(9), 2888–2893.CrossRef Karaoz, U., Murali, T., Letovsky, S., Zheng, Y., Ding, C., Cantor, C., & Kasif, S. (2004). Whole-genome annotation by using evidence integration in functional-linkage networks. Proceedings of the National Academy of Sciences of the United States America, 101(9), 2888–2893.CrossRef
43.
Zurück zum Zitat Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts with an infinite relational model. In A. Cohn (Ed.), Proceedings of the 21st national conference on artificial intelligence (AAAI’ 06) (Vol. 1, pp. 381–388). AAAI Press. Kemp, C., Tenenbaum, J. B., Griffiths, T. L., Yamada, T., & Ueda, N. (2006). Learning systems of concepts with an infinite relational model. In A. Cohn (Ed.), Proceedings of the 21st national conference on artificial intelligence (AAAI’ 06) (Vol. 1, pp. 381–388). AAAI Press.
44.
Zurück zum Zitat Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., & Domingos, P. (2007). The alchemy system for statistical relational ai. Technical report of Department of Computer Science and Engineering, Washington, USA: University of Washington. Kok, S., Sumner, M., Richardson, M., Singla, P., Poon, H., Lowd, D., & Domingos, P. (2007). The alchemy system for statistical relational ai. Technical report of Department of Computer Science and Engineering, Washington, USA: University of Washington.
45.
Zurück zum Zitat Kondor, R. I., & Lafferty, J. D. (2002). Diffusion kernels on graphs and other discrete input spaces. In ICML ’02: Proceedings of the nineteenth international conference on machine learning (pp. 315–322). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. Kondor, R. I., & Lafferty, J. D. (2002). Diffusion kernels on graphs and other discrete input spaces. In ICML ’02: Proceedings of the nineteenth international conference on machine learning (pp. 315–322). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.
46.
Zurück zum Zitat Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., & Noble, W. (2004). Kernel-based data fusion and its application to protein function prediction in yeast. The Ninth Pacific Symposium on Biocomputing (PSB 2004), 300–311. Lanckriet, G., Deng, M., Cristianini, N., Jordan, M., & Noble, W. (2004). Kernel-based data fusion and its application to protein function prediction in yeast. The Ninth Pacific Symposium on Biocomputing (PSB 2004), 300–311.
47.
Zurück zum Zitat Lee, I., Date, S. V., Adai, A. T., & Marcotte, E. M. (2004). A probabilistic functional network of yeast genes. Science, 306, 1555–1558.CrossRef Lee, I., Date, S. V., Adai, A. T., & Marcotte, E. M. (2004). A probabilistic functional network of yeast genes. Science, 306, 1555–1558.CrossRef
48.
Zurück zum Zitat Lee, I., Lehner, B., Crombie, C., Wong, W., Fraser, A. G., & Marcotte, E. M. (2008). A single gene network accurately predicts phenotypic effects of gene perturbation in caenorhabditis elegans. Nature Genetics, 40(2), 181–188. DOI10.1038/ng.2007.70. Retrieved from URL http://dx.doi.org/10.1038/ng.2007.70. Lee, I., Lehner, B., Crombie, C., Wong, W., Fraser, A. G., & Marcotte, E. M. (2008). A single gene network accurately predicts phenotypic effects of gene perturbation in caenorhabditis elegans. Nature Genetics, 40(2), 181–188. DOI10.1038/ng.2007.70. Retrieved from URL http://​dx.​doi.​org/​10.​1038/​ng.​2007.​70.
49.
Zurück zum Zitat Leone, M., & Pagnani, A. (2004). Predicting protein functions with message passing algorithms. Bioinformatics, 21(2), 239–247.CrossRef Leone, M., & Pagnani, A. (2004). Predicting protein functions with message passing algorithms. Bioinformatics, 21(2), 239–247.CrossRef
50.
Zurück zum Zitat Letovsky, S., & Kasif, S. (2003). Predicting protein function from protein/protein interaction data: A probabilistic approach. Bioinformatics, 19(Suppl. 1), I197–I204.CrossRef Letovsky, S., & Kasif, S. (2003). Predicting protein function from protein/protein interaction data: A probabilistic approach. Bioinformatics, 19(Suppl. 1), I197–I204.CrossRef
51.
Zurück zum Zitat Lin, N., Wu, B., Jansen, R., Gerstein, M., & Zhao, H. (2004). Information assessment on predicting protein-protein interactions. BMC Bioinformatics, 5, 154.CrossRef Lin, N., Wu, B., Jansen, R., Gerstein, M., & Zhao, H. (2004). Information assessment on predicting protein-protein interactions. BMC Bioinformatics, 5, 154.CrossRef
52.
Zurück zum Zitat Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O., & Eisenberg, D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science, 285, 751–753.CrossRef Marcotte, E. M., Pellegrini, M., Ng, H. L., Rice, D. W., Yeates, T. O., & Eisenberg, D. (1999). Detecting protein function and protein-protein interactions from genome sequences. Science, 285, 751–753.CrossRef
53.
Zurück zum Zitat Martin, S., Roe, D., & Faulon, J. L. (2005). Predicting protein-protein interactions using signature products. Bioinformatics, 21(2), 218–226.CrossRef Martin, S., Roe, D., & Faulon, J. L. (2005). Predicting protein-protein interactions using signature products. Bioinformatics, 21(2), 218–226.CrossRef
54.
Zurück zum Zitat von Mering, C., Jensen, L., Snel, B., Hooper, S., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M., & Bork, P. (2005). STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33, D433–D437.CrossRef von Mering, C., Jensen, L., Snel, B., Hooper, S., Krupp, M., Foglierini, M., Jouffre, N., Huynen, M., & Bork, P. (2005). STRING: Known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research, 33, D433–D437.CrossRef
55.
Zurück zum Zitat von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., & Bork, P. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417(6887), 399–403.CrossRef von Mering, C., Krause, R., Snel, B., Cornell, M., Oliver, S. G., Fields, S., & Bork, P. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature, 417(6887), 399–403.CrossRef
56.
Zurück zum Zitat Minkov, E. (2008). Adaptive graph walk based similarity measures in entity-relation graphs. Ph.D. thesis, Carnegie Mellon University. Minkov, E. (2008). Adaptive graph walk based similarity measures in entity-relation graphs. Ph.D. thesis, Carnegie Mellon University.
57.
Zurück zum Zitat Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., & Morris, Q. (2008). Genemania: A real-time multiple association network integration algorithm for predicting gene function. Genome Biology, 9(Suppl. 1), S4. DOI10.1186/gb-2008-9-s1-s4. Retrieved from URL http://dx.doi.org/10.1186/gb-2008-9-s1-s4. Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., & Morris, Q. (2008). Genemania: A real-time multiple association network integration algorithm for predicting gene function. Genome Biology, 9(Suppl. 1), S4. DOI10.1186/gb-2008-9-s1-s4. Retrieved from URL http://​dx.​doi.​org/​10.​1186/​gb-2008-9-s1-s4.
58.
Zurück zum Zitat Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., & Singh, M. (2005). Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 21(S1), i302–i310. Nabieva, E., Jim, K., Agarwal, A., Chazelle, B., & Singh, M. (2005). Whole-proteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics, 21(S1), i302–i310.
59.
Zurück zum Zitat Neville, J., Rattigan, M., & Jensen, D. (2003). Statistical relational learning: Four claims and a survey. In: Getoor, L., & Jensen, D. (Eds.) The workshop on learning statistical models from relational data, 18th international joint conference on artificial intelligence. Mexico: Acapulco. Neville, J., Rattigan, M., & Jensen, D. (2003). Statistical relational learning: Four claims and a survey. In: Getoor, L., & Jensen, D. (Eds.) The workshop on learning statistical models from relational data, 18th international joint conference on artificial intelligence. Mexico: Acapulco.
60.
Zurück zum Zitat Nguyen, T. P., & Ho, T. B. (2008). An integrative domain-based approach to predicting protein-protein interactions. Journal of Bioinformatics and Computational Biology, 6(6), 1115–1132.CrossRef Nguyen, T. P., & Ho, T. B. (2008). An integrative domain-based approach to predicting protein-protein interactions. Journal of Bioinformatics and Computational Biology, 6(6), 1115–1132.CrossRef
62.
63.
Zurück zum Zitat Pagel, P., Strack, N., Oesterheld, M., Stmpflen, V., & Frishman, D. (2007). Computational prediction of domain interactions. Methods of Molecular Biology, 396, 3–15.CrossRef Pagel, P., Strack, N., Oesterheld, M., Stmpflen, V., & Frishman, D. (2007). Computational prediction of domain interactions. Methods of Molecular Biology, 396, 3–15.CrossRef
64.
Zurück zum Zitat Peña-Castillo, L., Tasan, M., Myers, C. L., Lee, H., Joshi, T., Zhang, C., Guan, Y., Leone, M., Pagnani, A., Kim, W. K., Krumpelman, C., Tian, W., Obozinski, G., Qi, Y., Mostafavi, S., Lin, G. N., Berriz, G. F., Gibbons, F. D., Lanckriet, G., Qiu, J., Grant, C., Barutcuoglu, Z., Hill, D. P., Warde-Farley, D., Grouios, C., Ray, D., Blake, J. A., Deng, M., Jordan, M. I., Noble, W. S., Morris, Q., Klein-Seetharaman, J., Bar-Joseph, Z., Chen, T., Sun, F., Troyanskaya, O. G., Marcotte, E. M., Xu, D., Hughes, T. R., & Roth, F. P. (2008). A critical assessment of mus musculus gene function prediction using integrated genomic evidence. Genome Biology, 9(Suppl. 1), S2. DOI10.1186/gb-2008-9-s1-s2. Retrieved from URL http://dx.doi.org/10.1186/gb-2008-9-s1-s2. Peña-Castillo, L., Tasan, M., Myers, C. L., Lee, H., Joshi, T., Zhang, C., Guan, Y., Leone, M., Pagnani, A., Kim, W. K., Krumpelman, C., Tian, W., Obozinski, G., Qi, Y., Mostafavi, S., Lin, G. N., Berriz, G. F., Gibbons, F. D., Lanckriet, G., Qiu, J., Grant, C., Barutcuoglu, Z., Hill, D. P., Warde-Farley, D., Grouios, C., Ray, D., Blake, J. A., Deng, M., Jordan, M. I., Noble, W. S., Morris, Q., Klein-Seetharaman, J., Bar-Joseph, Z., Chen, T., Sun, F., Troyanskaya, O. G., Marcotte, E. M., Xu, D., Hughes, T. R., & Roth, F. P. (2008). A critical assessment of mus musculus gene function prediction using integrated genomic evidence. Genome Biology, 9(Suppl. 1), S2. DOI10.1186/gb-2008-9-s1-s2. Retrieved from URL http://​dx.​doi.​org/​10.​1186/​gb-2008-9-s1-s2.
65.
Zurück zum Zitat Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., & Yeates, T. O. (1999). Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4285–4288.CrossRef Pellegrini, M., Marcotte, E. M., Thompson, M. J., Eisenberg, D., & Yeates, T. O. (1999). Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4285–4288.CrossRef
66.
Zurück zum Zitat Qi, Y., Bar-Joseph, Z., & Klein-Seetharaman, J. (2006). Evaluation of different biological data and computational classification methods for use in protein interaction prediction. PROTEINS: Structure, Function, and Bioinformatics, 63(3), 490–500.CrossRef Qi, Y., Bar-Joseph, Z., & Klein-Seetharaman, J. (2006). Evaluation of different biological data and computational classification methods for use in protein interaction prediction. PROTEINS: Structure, Function, and Bioinformatics, 63(3), 490–500.CrossRef
67.
Zurück zum Zitat Qi, Y., Klein-Seetharaman, J., & Bar-Joseph, Z. (2005). Random forest similarity for protein-protein interaction prediction from multiple sources. Pacific Symposium on Biocomputing, 10, 531–542.CrossRef Qi, Y., Klein-Seetharaman, J., & Bar-Joseph, Z. (2005). Random forest similarity for protein-protein interaction prediction from multiple sources. Pacific Symposium on Biocomputing, 10, 531–542.CrossRef
68.
Zurück zum Zitat Qi, Y., Klein-Seetharaman, J., & Bar-Joseph, Z. (2005). Random forest similarity for protein-protein interaction prediction from multiple sources. In Proceedings of the Pacific Symposium, Hawaii, USA, 4–8 January 2005, pp. 531–542. Qi, Y., Klein-Seetharaman, J., & Bar-Joseph, Z. (2005). Random forest similarity for protein-protein interaction prediction from multiple sources. In Proceedings of the Pacific Symposium, Hawaii, USA, 4–8 January 2005, pp. 531–542.
70.
Zurück zum Zitat Ramani, A. K., Bunescu, R. C., Mooney, R. J., & Marcotte, E. M. (2005). Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biology, 6(5), R40. Article. Ramani, A. K., Bunescu, R. C., Mooney, R. J., & Marcotte, E. M. (2005). Consolidating the set of known human protein-protein interactions in preparation for large-scale mapping of the human interactome. Genome Biology, 6(5), R40. Article.
71.
Zurück zum Zitat Rhodes, D. R., Tomlins, S. A., Varambally, S., Mahavisno, V., Barrette, T., Kalyana-Sundaram, S., Ghosh, D., Pandey, A., & Chinnaiyan, A. M. (2005). Probabilistic model of the human protein-protein interaction network. Nature Biotechnology, 8, 951–959. Article. Rhodes, D. R., Tomlins, S. A., Varambally, S., Mahavisno, V., Barrette, T., Kalyana-Sundaram, S., Ghosh, D., Pandey, A., & Chinnaiyan, A. M. (2005). Probabilistic model of the human protein-protein interaction network. Nature Biotechnology, 8, 951–959. Article.
72.
Zurück zum Zitat Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.CrossRef Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.CrossRef
74.
Zurück zum Zitat Ritchie, D. W. (2008). Recent progress and future directions in protein-protein docking. Current Protein and Peptied Science, 9(1), 1–15.CrossRef Ritchie, D. W. (2008). Recent progress and future directions in protein-protein docking. Current Protein and Peptied Science, 9(1), 1–15.CrossRef
75.
Zurück zum Zitat Rual, J. F., Venkatesan, K., et al. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437(7062), 1173–1178. 1476–4687 (Electronic) Journal Article. Rual, J. F., Venkatesan, K., et al. (2005). Towards a proteome-scale map of the human protein-protein interaction network. Nature, 437(7062), 1173–1178. 1476–4687 (Electronic) Journal Article.
76.
Zurück zum Zitat Samanta, M., & Liang, S. (2003). Predicting protein functions from redundancies in large-scale protein interaction networks. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12,579–12,583. Samanta, M., & Liang, S. (2003). Predicting protein functions from redundancies in large-scale protein interaction networks. Proceedings of the National Academy of Sciences of the United States of America, 100(22), 12,579–12,583.
78.
Zurück zum Zitat Scott, M. S., & Barton, G. J. (2007). Probabilistic prediction and ranking of human protein-protein interactions. BMC Bioinformatics, 8, 239. 1471–2105 (Electronic) Comparative Study Journal Article Research Support, Non-U.S. Gov’t Scott, M. S., & Barton, G. J. (2007). Probabilistic prediction and ranking of human protein-protein interactions. BMC Bioinformatics, 8, 239. 1471–2105 (Electronic) Comparative Study Journal Article Research Support, Non-U.S. Gov’t
79.
Zurück zum Zitat Scudder, H. (1965). Probability of error of some adaptive pattern-recognition machines. IEEE Transactions on Information Theory, 11(3), 363–371.MathSciNetMATHCrossRef Scudder, H. (1965). Probability of error of some adaptive pattern-recognition machines. IEEE Transactions on Information Theory, 11(3), 363–371.MathSciNetMATHCrossRef
80.
Zurück zum Zitat Sharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of protein function. Molecular Systems Biology, 3, 88. 1744–4292 (Electronic) Journal Article Research Support, Non-U.S. Gov’t Review Sharan, R., Ulitsky, I., & Shamir, R. (2007). Network-based prediction of protein function. Molecular Systems Biology, 3, 88. 1744–4292 (Electronic) Journal Article Research Support, Non-U.S. Gov’t Review
81.
Zurück zum Zitat Shoemaker, B. A., & Panchenko, A. R. (2007). Deciphering protein-protein interactions. part i. experimental techniques and databases. PLoS Computational Biology, 3(3), e42. 1553–7358 (Electronic) Journal Article Research Support, N.I.H., Intramural Review. Shoemaker, B. A., & Panchenko, A. R. (2007). Deciphering protein-protein interactions. part i. experimental techniques and databases. PLoS Computational Biology, 3(3), e42. 1553–7358 (Electronic) Journal Article Research Support, N.I.H., Intramural Review.
82.
Zurück zum Zitat Shoemaker, B. A., & Panchenko, A. R. (2007). Deciphering protein-protein interactions. part ii. computational methods to predict protein and domain interaction partners. PLoS Computational Biology, 3(4), e43. 1553–7358 (Electronic) Journal Article Research Support, N.I.H., Intramural Review. Shoemaker, B. A., & Panchenko, A. R. (2007). Deciphering protein-protein interactions. part ii. computational methods to predict protein and domain interaction partners. PLoS Computational Biology, 3(4), e43. 1553–7358 (Electronic) Journal Article Research Support, N.I.H., Intramural Review.
83.
Zurück zum Zitat Smola, A., & Kondor, R. (2003). Kernels and regularization on graphs. In B. Schölkopf & M. Warmuth (Eds.), Proceedings of the annual conference on computational learning theory and kernel workshop, lecture notes in computer science. Germany: Springer-Verlag. Smola, A., & Kondor, R. (2003). Kernels and regularization on graphs. In B. Schölkopf & M. Warmuth (Eds.), Proceedings of the annual conference on computational learning theory and kernel workshop, lecture notes in computer science. Germany: Springer-Verlag.
84.
Zurück zum Zitat Sontag, D., Singh, R., & Berger, B. (2007). Probabilistic modeling of systematic errors in two-hybrid experiments. The Twelfth Pacific Symposium on Biocomputing (PSB 2007), 445–457. Sontag, D., Singh, R., & Berger, B. (2007). Probabilistic modeling of systematic errors in two-hybrid experiments. The Twelfth Pacific Symposium on Biocomputing (PSB 2007), 445–457.
85.
Zurück zum Zitat Sprinzak, E., & Margalit., H. (2001). Correlated sequence-signatures as markers of protein-protein interaction. Journal of Molecular Biology, 311, 681-692. Use mutual information (average) of two sequence signatures in the interacting protein pairs as signature interact probability; InterPro = > sequence signature of protein. Sprinzak, E., & Margalit., H. (2001). Correlated sequence-signatures as markers of protein-protein interaction. Journal of Molecular Biology, 311, 681-692. Use mutual information (average) of two sequence signatures in the interacting protein pairs as signature interact probability; InterPro = > sequence signature of protein.
86.
Zurück zum Zitat Stelzl, U., Worm, U., Lalowski, M., et al. (2005). A human protein-protein interaction network: A resource for annotating the proteome. Cell, 122(6), 957–968. 0092–8674 (Print) Journal Article. Stelzl, U., Worm, U., Lalowski, M., et al. (2005). A human protein-protein interaction network: A resource for annotating the proteome. Cell, 122(6), 957–968. 0092–8674 (Print) Journal Article.
87.
Zurück zum Zitat Tastan, O., Qi, Y., Carbonell, J., & Klein-Seetharaman, J. (2009). Prediction of interactions between hiv-1 and human proteins by information integration. The fourteenth Pacific Symposium on Biocomputing (PSB 2009), pp. 516–527. Tastan, O., Qi, Y., Carbonell, J., & Klein-Seetharaman, J. (2009). Prediction of interactions between hiv-1 and human proteins by information integration. The fourteenth Pacific Symposium on Biocomputing (PSB 2009), pp. 516–527.
88.
89.
Zurück zum Zitat Tsuda, K., & Noble, W. (2004). Learning kernels from biological networks by maximizing entropy. Bioinformatics, 20(Suppl. 1), I326–I333.CrossRef Tsuda, K., & Noble, W. (2004). Learning kernels from biological networks by maximizing entropy. Bioinformatics, 20(Suppl. 1), I326–I333.CrossRef
90.
Zurück zum Zitat Vazquez, A., Flammini, A., Maritan, A., & Vespignani, A. (2003). Global protein function prediction from protein-protein interaction networks. Nature Biotechnology, 21, 697–700.CrossRef Vazquez, A., Flammini, A., Maritan, A., & Vespignani, A. (2003). Global protein function prediction from protein-protein interaction networks. Nature Biotechnology, 21, 697–700.CrossRef
91.
Zurück zum Zitat Vert, J. P., Qiu, J., & Noble, W. S. (2007). A new pairwise kernel for biological network inference with support vector machines. BMC Bioinformatics, 8(Suppl. 10), S8CrossRef Vert, J. P., Qiu, J., & Noble, W. S. (2007). A new pairwise kernel for biological network inference with support vector machines. BMC Bioinformatics, 8(Suppl. 10), S8CrossRef
92.
Zurück zum Zitat Wang, H., Segal, E., Ben-Hur, A., Li, Q., Vidal, M., & Koller, D. (2007). InSite: A computational method for identifying protein-protein interaction binding sites on a proteome-wide scale. Genome Biology, 8(9), R192.1–R192.18. Wang, H., Segal, E., Ben-Hur, A., Li, Q., Vidal, M., & Koller, D. (2007). InSite: A computational method for identifying protein-protein interaction binding sites on a proteome-wide scale. Genome Biology, 8(9), R192.1–R192.18.
93.
Zurück zum Zitat Wu, Y., & Lonardi, S. (2008). A linear-time algorithm for predicting functional annotations from ppi networks. Journal of Bioinformatics and Computational Biology, 6(6), 1049–1065.CrossRef Wu, Y., & Lonardi, S. (2008). A linear-time algorithm for predicting functional annotations from ppi networks. Journal of Bioinformatics and Computational Biology, 6(6), 1049–1065.CrossRef
94.
Zurück zum Zitat Xu, Z., Tresp, V., Yu, K., & Kriegel, H. P. (2006). Infinite hidden relational models. In UAI ’06, Proceedings of the 22nd Conference in Uncertainty in Artificial Intelligence, July 13–16 2006, Cambridge, MA, USA. Xu, Z., Tresp, V., Yu, K., & Kriegel, H. P. (2006). Infinite hidden relational models. In UAI ’06, Proceedings of the 22nd Conference in Uncertainty in Artificial Intelligence, July 13–16 2006, Cambridge, MA, USA.
95.
Zurück zum Zitat Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., & Kanehisa, M. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13), i232–i240. DOI10.1093/bioinformatics/btn162. Retrieved from URL http://dx.doi.org/10.1093/bioinformatics/btn162. Yamanishi, Y., Araki, M., Gutteridge, A., Honda, W., & Kanehisa, M. (2008). Prediction of drug-target interaction networks from the integration of chemical and genomic spaces. Bioinformatics, 24(13), i232–i240. DOI10.1093/bioinformatics/btn162. Retrieved from URL http://​dx.​doi.​org/​10.​1093/​bioinformatics/​btn162.
97.
Zurück zum Zitat Yanay, O., Marco, P., & Burkard, R. (2005). Tutorial: Function prediction – from high throughput to individual proteins. The Tenth Pacific Symposium on Biocomputing (PSB 2005). Yanay, O., Marco, P., & Burkard, R. (2005). Tutorial: Function prediction – from high throughput to individual proteins. The Tenth Pacific Symposium on Biocomputing (PSB 2005).
98.
99.
Zurück zum Zitat Yu, H., Braun, P., Yildirim, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J. F., Dricot, A., Vazquez, A., Murray, R. R., Simon, C., Tardivo, L., Tam, S., Svrzikapa, N., Fan, C., de Smet, A. S., Motyl, A., Hudson, M. E., Park, J., Xin, X., Cusick, M. E., Moore, T., Boone, C., Snyder, M., Roth, F. P., Barabsi, A. L., Tavernier, J., Hill, D. E., & Vidal, M. (2008). High-quality binary protein interaction map of the yeast interactome network. Science, 322(5898), 104–110. DOI 10.1126/science.1158684. Retrieved from URL http://dx.doi.org/10.1126/science.1158684 Yu, H., Braun, P., Yildirim, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J. F., Dricot, A., Vazquez, A., Murray, R. R., Simon, C., Tardivo, L., Tam, S., Svrzikapa, N., Fan, C., de Smet, A. S., Motyl, A., Hudson, M. E., Park, J., Xin, X., Cusick, M. E., Moore, T., Boone, C., Snyder, M., Roth, F. P., Barabsi, A. L., Tavernier, J., Hill, D. E., & Vidal, M. (2008). High-quality binary protein interaction map of the yeast interactome network. Science, 322(5898), 104–110. DOI 10.1126/science.1158684. Retrieved from URL http://​dx.​doi.​org/​10.​1126/​science.​1158684
101.
Zurück zum Zitat Zhang, L., Wong, S., King, O., & Roth, F. (2004). Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics, 5, 38.CrossRef Zhang, L., Wong, S., King, O., & Roth, F. (2004). Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics, 5, 38.CrossRef
102.
Zurück zum Zitat Zhang, L. V., Wong, S., King, O., & Roth, F. (2004). Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics, 5(1), 38–53.CrossRef Zhang, L. V., Wong, S., King, O., & Roth, F. (2004). Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics, 5(1), 38–53.CrossRef
104.
Zurück zum Zitat Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In: T. Fawcett & N. Mishra (Eds.), The Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC. Menlo Park, California: AAAI Press. ISBN 978-1-57735-189-4 Zhu, X., Ghahramani, Z., & Lafferty, J. (2003). Semi-supervised learning using gaussian fields and harmonic functions. In: T. Fawcett & N. Mishra (Eds.), The Twentieth International Conference on Machine Learning (ICML-2003), Washington, DC. Menlo Park, California: AAAI Press. ISBN 978-1-57735-189-4
Metadaten
Titel
Protein Interaction Networks: Protein Domain Interaction and Protein Function Prediction
verfasst von
Yanjun Qi
William Stafford Noble
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-642-16345-6_21

Premium Partner