Skip to main content

2017 | OriginalPaper | Buchkapitel

6. Putting Nanoparticles to Work: Self-propelled Inorganic Micro- and Nanomotors

verfasst von : Kaitlin J. Coopersmith

Erschienen in: Anisotropic and Shape-Selective Nanomaterials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The development of nanomotors (nano- and micron sized particles that convert energy into mechanical movement) is an exciting endeavor. Nanomotors have been crafted in an extensive variety of sizes, morphologies and compositions for applications such as drug delivery, cargo transport, sensing, and lithography. Inspired by nature’s elegant use of chemical gradients and cellular tracks for independently driven molecular processes, a variety of machines have been created. With the recent bestowment of the Nobel Prize for molecular machines, this concept is being actively pursued to create inorganic nano- and microparticles that independently move for a gamut of applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Badjić, J.D., et al. 2004. A molecular elevator. Science 303: 1845–1849.CrossRef Badjić, J.D., et al. 2004. A molecular elevator. Science 303: 1845–1849.CrossRef
2.
Zurück zum Zitat Bruns, C.J., and J.F. Stoddart. 2014. Rotaxane-based molecular muscles. Accounts of Chemical Research 47: 2186–2199.CrossRef Bruns, C.J., and J.F. Stoddart. 2014. Rotaxane-based molecular muscles. Accounts of Chemical Research 47: 2186–2199.CrossRef
3.
Zurück zum Zitat Balzani, V., et al. 2006. Autonomous artificial nanomotor powered by sunlight. Proceedings of the National Academy of Sciences 103 (5): 1178–1183. Balzani, V., et al. 2006. Autonomous artificial nanomotor powered by sunlight. Proceedings of the National Academy of Sciences 103 (5): 1178–1183.
4.
Zurück zum Zitat Duan, W., et al. 2015. Synthetic nano- and micromachines in analytical chemistry: Sensing, migration, capture, delivery and separation. Annual Review of Analytical Chemistry 8: 311–333.CrossRef Duan, W., et al. 2015. Synthetic nano- and micromachines in analytical chemistry: Sensing, migration, capture, delivery and separation. Annual Review of Analytical Chemistry 8: 311–333.CrossRef
5.
Zurück zum Zitat Ge, Y., et al. 2016. Dual-fuel-driven bactericidal micromotor. Nano-Micro Letters 8 (2): 157–164.CrossRef Ge, Y., et al. 2016. Dual-fuel-driven bactericidal micromotor. Nano-Micro Letters 8 (2): 157–164.CrossRef
6.
Zurück zum Zitat Li, J., et al. 2015. Self-propelled nanomotors autonomously seek and repair cracks. Nano Letters 15: 7077–7085.CrossRef Li, J., et al. 2015. Self-propelled nanomotors autonomously seek and repair cracks. Nano Letters 15: 7077–7085.CrossRef
7.
Zurück zum Zitat Kagan, D., P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G. Flechsig, and J. Wang. 2009. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. Journal of the American Chemical Society 131: 12082–12083.CrossRef Kagan, D., P. Calvo-Marzal, S. Balasubramanian, S. Sattayasamitsathit, K.M. Manesh, G. Flechsig, and J. Wang. 2009. Chemical sensing based on catalytic nanomotors: Motion-based detection of trace silver. Journal of the American Chemical Society 131: 12082–12083.CrossRef
8.
Zurück zum Zitat Demirok, U.K., et al. 2008. Ultrafast catalytic alloy nanomotors. Angewandte Chemie International Edition 47 (48): 9349–9351.CrossRef Demirok, U.K., et al. 2008. Ultrafast catalytic alloy nanomotors. Angewandte Chemie International Edition 47 (48): 9349–9351.CrossRef
9.
Zurück zum Zitat Cai, K., et al. 2016. A method for measuring rotation of a thermal carbon nanomotor using centrifugal effect. Scientific Reports 6: 27338.CrossRef Cai, K., et al. 2016. A method for measuring rotation of a thermal carbon nanomotor using centrifugal effect. Scientific Reports 6: 27338.CrossRef
10.
Zurück zum Zitat Wang, W., et al. 2013. Understanding the efficiency of autonomous nano- and microscale motors. Journal of the American Chemical Society 135: 10557–10565.CrossRef Wang, W., et al. 2013. Understanding the efficiency of autonomous nano- and microscale motors. Journal of the American Chemical Society 135: 10557–10565.CrossRef
11.
Zurück zum Zitat Liu, R., and A. Sen. 2011. Autonomous nanomotor based on copper-platinum segmented nanobattery. Journal of the American Chemical Society 133: 20064–20067.CrossRef Liu, R., and A. Sen. 2011. Autonomous nanomotor based on copper-platinum segmented nanobattery. Journal of the American Chemical Society 133: 20064–20067.CrossRef
12.
Zurück zum Zitat Vach, P.J., S. Klumpp, and D. Faivre. 2016. Steering magnetic micropropllers along independent trajectories. Journal of Physics D: Applied Physics 49: 065003.CrossRef Vach, P.J., S. Klumpp, and D. Faivre. 2016. Steering magnetic micropropllers along independent trajectories. Journal of Physics D: Applied Physics 49: 065003.CrossRef
13.
Zurück zum Zitat Gao, W., et al. 2012. Cargo-towing fuel-free magnetic nanowsimmers for targeted drug delivery. Small 8 (3): 460–467.CrossRef Gao, W., et al. 2012. Cargo-towing fuel-free magnetic nanowsimmers for targeted drug delivery. Small 8 (3): 460–467.CrossRef
14.
Zurück zum Zitat Chen, J., et al. 2015. Impeded mass transportation due to defects in thermally driven nanotube nanmotor. Journal of Physical Chemistry C 119: 17362–17368.CrossRef Chen, J., et al. 2015. Impeded mass transportation due to defects in thermally driven nanotube nanmotor. Journal of Physical Chemistry C 119: 17362–17368.CrossRef
15.
Zurück zum Zitat Li, J., et al. 2014. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8: 11118–11125.CrossRef Li, J., et al. 2014. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 8: 11118–11125.CrossRef
16.
Zurück zum Zitat Abdelmohsen, L.K.E.A., M. Nijemeisland, G.M. Pawar, G.A. Janssen, R.J.M. Nolte, J.C.M. van Hest, and D.A. Wilson. 2016. Dynamic loading and unloading of proteins in polymeric stomatocytes: Formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10: 2652–2660.CrossRef Abdelmohsen, L.K.E.A., M. Nijemeisland, G.M. Pawar, G.A. Janssen, R.J.M. Nolte, J.C.M. van Hest, and D.A. Wilson. 2016. Dynamic loading and unloading of proteins in polymeric stomatocytes: Formation of an enzyme-loaded supramolecular nanomotor. ACS Nano 10: 2652–2660.CrossRef
17.
Zurück zum Zitat Gao, W., S. Sattayasamitsathit, and J. Wang. 2012. Catalytically propelled micro-/nanomotors: How fast can they move? The Chemical Record 12 (1): 224–231. Gao, W., S. Sattayasamitsathit, and J. Wang. 2012. Catalytically propelled micro-/nanomotors: How fast can they move? The Chemical Record 12 (1): 224–231.
18.
Zurück zum Zitat Young, L.E. 2009. Equine athletes, the equine athlete’s heart and racing success. Experimental Physiology 88 (5): 659–663.CrossRef Young, L.E. 2009. Equine athletes, the equine athlete’s heart and racing success. Experimental Physiology 88 (5): 659–663.CrossRef
19.
Zurück zum Zitat Rubin, S., M.H. Young, J.C. Wright, D.L. Whitaker, and A.N. Ahn. 2016. Exceptional running and turning performance in a mite. Journal of Experimental Biology 219: 676–685.CrossRef Rubin, S., M.H. Young, J.C. Wright, D.L. Whitaker, and A.N. Ahn. 2016. Exceptional running and turning performance in a mite. Journal of Experimental Biology 219: 676–685.CrossRef
20.
Zurück zum Zitat Bustamante, C., D. Keller, and G. Oster. 2001. The physics of molecular motors. Accounts of Chemical Research 34: 412–420.CrossRef Bustamante, C., D. Keller, and G. Oster. 2001. The physics of molecular motors. Accounts of Chemical Research 34: 412–420.CrossRef
21.
Zurück zum Zitat Roberts, A.J., et al. 2013. Functions and mechanisms of dynein motor proteins. Nature Reviews Molecular Cell Biology 14: 713–726.CrossRef Roberts, A.J., et al. 2013. Functions and mechanisms of dynein motor proteins. Nature Reviews Molecular Cell Biology 14: 713–726.CrossRef
22.
Zurück zum Zitat Bayly, P.V., and S.K. Dutcher. 2016. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella. Journal of the Royal Society, Interface 13 (123): 20160523.CrossRef Bayly, P.V., and S.K. Dutcher. 2016. Steady dynein forces induce flutter instability and propagating waves in mathematical models of flagella. Journal of the Royal Society, Interface 13 (123): 20160523.CrossRef
23.
Zurück zum Zitat Gennerich, A., and R.D. Vale. 2009. Walking the walk: How kinesin and dynein coordinate their steps. Current Opinion in Cell Biology 21: 59–67.CrossRef Gennerich, A., and R.D. Vale. 2009. Walking the walk: How kinesin and dynein coordinate their steps. Current Opinion in Cell Biology 21: 59–67.CrossRef
24.
Zurück zum Zitat Ishijima, S. 2016. Self-sustained oscillatory sliding movement of doublet microtubules and flagellar bend formation. PLoS ONE 11 (2): e0148880.CrossRef Ishijima, S. 2016. Self-sustained oscillatory sliding movement of doublet microtubules and flagellar bend formation. PLoS ONE 11 (2): e0148880.CrossRef
25.
Zurück zum Zitat Esteban-Fernández de Ávila, B., et al. 2016. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 10: p 4997–5005. Esteban-Fernández de Ávila, B., et al. 2016. Acoustically propelled nanomotors for intracellular siRNA delivery. ACS Nano. 10: p 4997–5005.
26.
Zurück zum Zitat Purcell, E.M. 1977. Life at low reynolds number. American Journal of Physics 45: 3–11.CrossRef Purcell, E.M. 1977. Life at low reynolds number. American Journal of Physics 45: 3–11.CrossRef
27.
Zurück zum Zitat Wang, W., et al. 2015. From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors. Accounts of Chemical Research 48: 1938–1946.CrossRef Wang, W., et al. 2015. From one to many: Dynamic assembly and collective behavior of self-propelled colloidal motors. Accounts of Chemical Research 48: 1938–1946.CrossRef
28.
Zurück zum Zitat Pavlick, R.A., et al. 2011. A polymerization-powered motor. Angewandte Chemie International Edition 50 (40): 9374–9377.CrossRef Pavlick, R.A., et al. 2011. A polymerization-powered motor. Angewandte Chemie International Edition 50 (40): 9374–9377.CrossRef
29.
Zurück zum Zitat Ma, X., et al. 2015. Enzyme-powered hollow mesoporous janus nanomotors. Nano Letters 15: 7043–7050.CrossRef Ma, X., et al. 2015. Enzyme-powered hollow mesoporous janus nanomotors. Nano Letters 15: 7043–7050.CrossRef
30.
Zurück zum Zitat Wong, F., and A. Sen. 2016. Progress toward light-harvesting self-electrophoretic motors: Highly efficient bimetallic nanomotors and micropumps in halogen media. ACS Nano 10: 7172–7179.CrossRef Wong, F., and A. Sen. 2016. Progress toward light-harvesting self-electrophoretic motors: Highly efficient bimetallic nanomotors and micropumps in halogen media. ACS Nano 10: 7172–7179.CrossRef
31.
Zurück zum Zitat Perro, A., et al. 2009. Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids and Surfaces A 332 (1): 57–62.CrossRef Perro, A., et al. 2009. Production of large quantities of “Janus” nanoparticles using wax-in-water emulsions. Colloids and Surfaces A 332 (1): 57–62.CrossRef
32.
Zurück zum Zitat Walker, D., et al. 2015. Optimal length of low reynolds number nanopropellers. Nano Letters 15 (7): 4412–4416.CrossRef Walker, D., et al. 2015. Optimal length of low reynolds number nanopropellers. Nano Letters 15 (7): 4412–4416.CrossRef
33.
Zurück zum Zitat Mandal, P., V. Choptra, and A. Ghosh. 2015. Independent positioning of magnetic nanomotors. ACS Nano 9 (5): 4717–4725.CrossRef Mandal, P., V. Choptra, and A. Ghosh. 2015. Independent positioning of magnetic nanomotors. ACS Nano 9 (5): 4717–4725.CrossRef
34.
Zurück zum Zitat Gao, W., et al. 2011. Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small 7 (14): 2047–2051.CrossRef Gao, W., et al. 2011. Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small 7 (14): 2047–2051.CrossRef
35.
Zurück zum Zitat Li, J., et al. 2015. Magneto-acoustic hybrid nanomotor. Nano Letters 15: 4814–4821.CrossRef Li, J., et al. 2015. Magneto-acoustic hybrid nanomotor. Nano Letters 15: 4814–4821.CrossRef
36.
Zurück zum Zitat Wang, W., et al. 2015. A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chemical Communications 51: 1020–1023.CrossRef Wang, W., et al. 2015. A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chemical Communications 51: 1020–1023.CrossRef
37.
Zurück zum Zitat Ahmed, S., et al. 2016. Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10: 4763–4769.CrossRef Ahmed, S., et al. 2016. Density and shape effects in the acoustic propulsion of bimetallic nanorod motors. ACS Nano 10: 4763–4769.CrossRef
38.
Zurück zum Zitat Wang, W., et al. 2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6: 6122–6132.CrossRef Wang, W., et al. 2012. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6: 6122–6132.CrossRef
39.
Zurück zum Zitat Nadal, F., and E. Lauga. 2014. Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Physics of Fluids 26: 082001.CrossRef Nadal, F., and E. Lauga. 2014. Asymmetric steady streaming as a mechanism for acoustic propulsion of rigid bodies. Physics of Fluids 26: 082001.CrossRef
40.
Zurück zum Zitat Rao, K.J., et al. 2015. A force to be reckoned with: A review of synthetic microswimmers powered by ultrasound. Small 11 (24): 2836–2846.CrossRef Rao, K.J., et al. 2015. A force to be reckoned with: A review of synthetic microswimmers powered by ultrasound. Small 11 (24): 2836–2846.CrossRef
41.
Zurück zum Zitat Liaw, J., Y. Chen, and M. Kuo. 2014. Rotating Au nanorod and nanowire driven by circularly polarized light. Optics Express 22 (21): 26005–26015.CrossRef Liaw, J., Y. Chen, and M. Kuo. 2014. Rotating Au nanorod and nanowire driven by circularly polarized light. Optics Express 22 (21): 26005–26015.CrossRef
42.
Zurück zum Zitat Liaw, J., Y. Chen, and M. Kuo. 2016. Spinning gold nanoparticles driven by circularly polarized light. Journal of Quantitative Spectroscopy and Radiative Transfer 175: 46–53.CrossRef Liaw, J., Y. Chen, and M. Kuo. 2016. Spinning gold nanoparticles driven by circularly polarized light. Journal of Quantitative Spectroscopy and Radiative Transfer 175: 46–53.CrossRef
43.
Zurück zum Zitat Guix, M., C.C. Mayorga-Martinez, and A. Merkoçi. 2014. Nano/micromotors in (bio) chemical science applications. Chemical Reviews 114: 6285–6322.CrossRef Guix, M., C.C. Mayorga-Martinez, and A. Merkoçi. 2014. Nano/micromotors in (bio) chemical science applications. Chemical Reviews 114: 6285–6322.CrossRef
44.
Zurück zum Zitat Bonin, K.D., B. Kourmanov, and T.G. Walker. 2002. Light torque nanocontrol, nanomotors and nanorockets. Optics Express 10 (19): 984–989.CrossRef Bonin, K.D., B. Kourmanov, and T.G. Walker. 2002. Light torque nanocontrol, nanomotors and nanorockets. Optics Express 10 (19): 984–989.CrossRef
45.
Zurück zum Zitat Sundararajan, S., et al. 2008. Catalytic motors for transport of colloidal cargo. Nano Letters 8: 1271–1276.CrossRef Sundararajan, S., et al. 2008. Catalytic motors for transport of colloidal cargo. Nano Letters 8: 1271–1276.CrossRef
46.
Zurück zum Zitat Lee, Y., and Z. Wu. 2015. Enhancing macrophage drug delivery efficiency via co-localization of cells and drug-loaded microcarriers in a 3D resonant ultrasound field. PLoS ONE 10 (8): e0135321.CrossRef Lee, Y., and Z. Wu. 2015. Enhancing macrophage drug delivery efficiency via co-localization of cells and drug-loaded microcarriers in a 3D resonant ultrasound field. PLoS ONE 10 (8): e0135321.CrossRef
47.
Zurück zum Zitat Pijper, D., et al. 2005. Acceleration of a nanomotor: Electronic control of the rotary speed of a light-driven molecular rotor. Journal of the American Chemical Society 127 (50): 17612–17613.CrossRef Pijper, D., et al. 2005. Acceleration of a nanomotor: Electronic control of the rotary speed of a light-driven molecular rotor. Journal of the American Chemical Society 127 (50): 17612–17613.CrossRef
48.
Zurück zum Zitat Eelkema, R., et al. 2006. Nanomotor rotates microscale objects. Nature 440: 163.CrossRef Eelkema, R., et al. 2006. Nanomotor rotates microscale objects. Nature 440: 163.CrossRef
49.
Zurück zum Zitat Chałupniak, A., E. Morales-Narváez, and A. Merkoçi. 2015. Micro and nanomotors in diagnostics. Advanced Drug Delivery Reviews 95: 104–116.CrossRef Chałupniak, A., E. Morales-Narváez, and A. Merkoçi. 2015. Micro and nanomotors in diagnostics. Advanced Drug Delivery Reviews 95: 104–116.CrossRef
50.
Zurück zum Zitat Küchler, A., et al. 2016. Enzymatic reactions in confined environments. Nature Nanotechnology 11: 409–420.CrossRef Küchler, A., et al. 2016. Enzymatic reactions in confined environments. Nature Nanotechnology 11: 409–420.CrossRef
51.
Zurück zum Zitat Akhavan, O., M. Saadati, and M. Jannesari. 2016. Graphene jet nanomotors in remote controllable self-propulsion swimmers in pure water. Nano Letters 15: 5619–5630.CrossRef Akhavan, O., M. Saadati, and M. Jannesari. 2016. Graphene jet nanomotors in remote controllable self-propulsion swimmers in pure water. Nano Letters 15: 5619–5630.CrossRef
Metadaten
Titel
Putting Nanoparticles to Work: Self-propelled Inorganic Micro- and Nanomotors
verfasst von
Kaitlin J. Coopersmith
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-59662-4_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.