Skip to main content
Erschienen in: Calcolo 1/2022

01.03.2022

PVTSI\(^{{{(m)}}}\): A novel approach to computation of Hadamard finite parts of nonperiodic singular integrals

verfasst von: Avram Sidi

Erschienen in: Calcolo | Ausgabe 1/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We consider the numerical computation of \(I[f]=\int \!\!\!\!\!=^b_a f(x)\,dx\), the Hadamard finite part of the finite-range singular integral \(\int ^b_a f(x)\,dx\), \(f(x)=g(x)/(x-t)^{m}\) with \(a<t<b\) and \(m\in \{1,2,\ldots \},\) assuming that (i) \(g\in C^\infty (a,b)\) and (ii) g(x) is allowed to have arbitrary integrable singularities at the endpoints \(x=a\) and \(x=b\). We first prove that \(\int \!\!\!\!\!=^b_a f(x)\,dx\) is invariant under any legitimate variable transformation \(x=\psi (\xi )\), \(\psi :[\alpha ,\beta ]\rightarrow [a,b]\), hence there holds \(\int \!\!\!\!\!=^\beta _\alpha F(\xi )\,d\xi =\int \!\!\!\!\!=^b_a f(x)\,dx\), where \(F(\xi )=f(\psi (\xi ))\,\psi '(\xi )\). Based on this result, we next choose \(\psi (\xi )\) such that \(\mathcal{{F}}(\xi )\), the \({{\mathcal {T}}}\)-periodic extension of \(F(\xi )\), \({{\mathcal {T}}}=\beta -\alpha \), is sufficiently smooth, and prove, with the help of some recent extension/generalization of the Euler–Maclaurin expansion, that we can apply to \(\int \!\!\!\!\!=^\beta _\alpha F(\xi )\,d\xi \) the quadrature formulas derived for periodic singular integrals developed in an earlier work of the author: [A. Sidi, “Unified compact numerical quadrature formulas for Hadamard finite parts of singular integrals of periodic functions.” Calcolo, 58, 2021. Article number 22]. We give a whole family of numerical quadrature formulas for \(\int \!\!\!\!\!=^\beta _\alpha F(\xi )\,d\xi \) for each m, which we denote \({\widehat{T}}^{(s)}_{m,n}[\mathcal{{F}}]\). Letting \(G(\xi )=(\xi -\tau )^m F(\xi )\), with \(\tau \in (\alpha ,\beta )\) determined from \(t=\psi (\tau )\), and letting \(h={\mathcal {T}}/n\), for \(m=3\), for example, we have the three formulas
$$\begin{aligned} {\widehat{T}}^{(0)}_{3,n}[\mathcal{{F}}]&=h\sum ^{n-1}_{j=1}\mathcal{{F}}(\tau +jh)-\frac{\pi ^2}{3}\,G'(\tau )\,h^{-1} +\frac{1}{6}\,G'''(\tau )\,h,\\ {\widehat{T}}^{(1)}_{3,n}[\mathcal{{F}}]&=h\sum ^n_{j=1}\mathcal{{F}}(\tau +jh-h/2)-\pi ^2\,G'(\tau )\,h^{-1},\\ {\widehat{T}}^{(2)}_{3,n}[\mathcal{{F}}]&=2h\sum ^n_{j=1}\mathcal{{F}}(\tau +jh-h/2)- \frac{h}{2}\sum ^{2n}_{j=1}\mathcal{{F}}(\tau +jh/2-h/4). \end{aligned}$$
We show that all of the formulas \({\widehat{T}}^{(s)}_{m,n}[\mathcal{{F}}]\) converge to I[f] as \(n\rightarrow \infty \); indeed, if \(\psi (\xi )\) is chosen such that \(\mathcal{{F}}^{(i)}(\alpha )=\mathcal{{F}}^{(i)}(\beta )=0\), \(i=0,1,\ldots ,q-1,\) and \(\mathcal{{F}}^{(q)}(\xi )\) is absolutely integrable in every closed interval not containing \(\xi =\tau \), then
$$\begin{aligned} {\widehat{T}}^{(s)}_{m,n}[\mathcal{{F}}]-I[f]=O(n^{-q})\quad \text {as }n\rightarrow \infty , \end{aligned}$$
where q is a positive integer determined by the behavior of g(x) at \(x=a\) and \(x=b\) and also by \(\psi (\xi )\). As such, q can be increased arbitrarily (even to \(q=\infty \), thus inducing spectral convergence) by choosing \(\psi (\xi )\) suitably. We provide several numerical examples involving nonperiodic integrands and confirm our theoretical results.
Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We reserve the notation \(\int ^b_af(x)\,dx\) for integrals that exist in the regular sense. The notation used for the Hadamard Finite Part of the integral \(\int ^b_a f(x)\,dx\) is \(\int \!\!\!\!\!=^b_a f(x)\,dx\) in general, while the accepted notation for the Cauchy Principal Value of the integral \(\int ^b_a f(x)\,dx\) is \(\int \!\!\!\!\!\!-^b_a f(x)\,dx\).
 
2
Given \(t\in (a,b)\), we can determine \(\tau \) as the solution to the equation \(\theta (\xi )=0\) with \(\theta (\xi )=\psi (\xi )-t\), which can be achieved by using the Newton–Raphson method, for example. For some of the variable transformations we present later in Sect. 4.3, given t, \(\tau \) is readily available, however.
 
3
Here we must emphasize that, in this work, we are using variable transformations for the sole purpose of achieving (4.3).
 
4
In case \((a,b)\ne (0,1)\), the variable transformation \(\psi :[0,1]\rightarrow [a,b]\) is simply \(\psi (\xi )=a+(b-a){\hat{\psi }}(\xi )\), hence \(\int \!\!\!\!\!=^b_af(x)\,dx=\int \!\!\!\!\!=^1_0F(\xi )\,d\xi \), with \(F(\xi )=f(\psi (\xi ))\psi '(\xi )=(b-a)f(a+(b-a){\hat{\psi }}(\xi )){\hat{\psi }}'(\xi )\).
 
5
Following [30, 31], it can be shown that, for \(s=0\), we have \(C_1^{(0)}\approx 2\Vert G\Vert \), \(C_2^{(0)}\approx 2\zeta (2)\Vert G\Vert /T\), and \(C_3^{(0)}\approx 2\zeta (3)\Vert G\Vert /T^2\), where \(\Vert G\Vert =\max _{\alpha \le \xi \le \beta }|G(\xi )|\).
 
6
\({\bar{B}}_p(x)\) is the 1-periodic extension of \(B_p(x)\) defined as
$$\begin{aligned} {\bar{B}}_p(x)=B_p(x)\quad \text {if }0\le x\le 1\quad \text {and}\quad {\bar{B}}_p(x)=B_p(x-k)\quad \text {if }k\le x\le k+1,\ \ k=\pm 1,\pm 2,\ldots . \end{aligned}$$
 
7
For the classical E–M expansion with remainder, see Steffensen [35], Ralston and Rabinowitz [19, pp. 136–138], Stoer and Bulirsch [36, pp. 156–159], and Sidi [22, Appendix D], for example.
 
8
We express this briefly by saying that “the asymptotic expansions in (A.6) can be differentiated infinitely many times.”
 
9
Note that the constants K and/or L in (A.6) hence in (A.8) can be zero.
 
10
When \(u\in C[a,b]\) and \(I[u]=\int ^b_au(x)\,dx\) exists as a regular integral, \(Q_n[u]=h\sum ^{n-1}_{i=0}u(a+jh+\theta h)\), is the offset trapezoidal rule for I[u] and \(\lim _{n\rightarrow \infty }Q_n[u;\theta ]=I[f]\). Note that, with \(\theta =1/2\), the offset trapezoidal rule becomes the classical mid-point rule.
In case \(\int ^b_au(x)\,dx\) does not exist as a regular integral, referring to \(h\sum ^{n-1}_{i=0}u(a+jh+\theta h)\) as an integration rule is meaningless. This is why we are referring to it as a sum and not as a rule.
 
Literatur
1.
Zurück zum Zitat Beckers, M., Haegemans, A.: Transformations of integrands for lattice rules. In: Espelid, T.O., Genz, A. (eds.) Numerical Integration: Recent Developments. Software and Applications, NATO ASI, pp. 329–340. Kluwer Academic Publishers, Boston (1992) Beckers, M., Haegemans, A.: Transformations of integrands for lattice rules. In: Espelid, T.O., Genz, A. (eds.) Numerical Integration: Recent Developments. Software and Applications, NATO ASI, pp. 329–340. Kluwer Academic Publishers, Boston (1992)
2.
Zurück zum Zitat Choi, U.J., Kim, S.W., Yun, B.I.: Improvement of the asymptotic behavior of the Euler–Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals. Int. J. Numer. Methods Eng. 61, 496–513 (2004)CrossRef Choi, U.J., Kim, S.W., Yun, B.I.: Improvement of the asymptotic behavior of the Euler–Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals. Int. J. Numer. Methods Eng. 61, 496–513 (2004)CrossRef
3.
Zurück zum Zitat Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)MATH Davis, P.J., Rabinowitz, P.: Methods of Numerical Integration, 2nd edn. Academic Press, New York (1984)MATH
4.
Zurück zum Zitat Elliott, D.: Sigmoidal transformations and the trapezoidal rule. J. Austral. Math. Soc. B(E) 40(E), E77–E137 (1998)MathSciNetMATH Elliott, D.: Sigmoidal transformations and the trapezoidal rule. J. Austral. Math. Soc. B(E) 40(E), E77–E137 (1998)MathSciNetMATH
5.
Zurück zum Zitat Elliott, D.: Sigmoidal-trapezoidal quadrature for ordinary and Cauchy principal value integrals. ANZIAM J. 46(E), E1–E69 (2004)MathSciNetMATH Elliott, D.: Sigmoidal-trapezoidal quadrature for ordinary and Cauchy principal value integrals. ANZIAM J. 46(E), E1–E69 (2004)MathSciNetMATH
6.
Zurück zum Zitat Elliott, D., Venturino, E.: Sigmoidal transformations and the Euler–Maclaurin expansion for evaluating certain Hadamard finite-part integrals. Numer. Math. 77, 453–465 (1997)MathSciNetCrossRef Elliott, D., Venturino, E.: Sigmoidal transformations and the Euler–Maclaurin expansion for evaluating certain Hadamard finite-part integrals. Numer. Math. 77, 453–465 (1997)MathSciNetCrossRef
7.
Zurück zum Zitat Evans, G.: Practical Numerical Integration. Wiley, New York (1993)MATH Evans, G.: Practical Numerical Integration. Wiley, New York (1993)MATH
8.
9.
Zurück zum Zitat Kaya, A.C., Erdogan, F.: On the solution of integral equations with strongly singular kernels. Quart. Appl. Math. 45, 105–122 (1987)MathSciNetCrossRef Kaya, A.C., Erdogan, F.: On the solution of integral equations with strongly singular kernels. Quart. Appl. Math. 45, 105–122 (1987)MathSciNetCrossRef
10.
Zurück zum Zitat Korobov, N.M.: Number-Theoretic Methods of Approximate Analysis. GIFL, Moscow (1963).. (In Russian)MATH Korobov, N.M.: Number-Theoretic Methods of Approximate Analysis. GIFL, Moscow (1963).. (In Russian)MATH
11.
Zurück zum Zitat Krommer, A.R., Ueberhuber, C.W.: Computational Integration. SIAM, Philadelphia (1998)CrossRef Krommer, A.R., Ueberhuber, C.W.: Computational Integration. SIAM, Philadelphia (1998)CrossRef
12.
Zurück zum Zitat Kythe, P.K., Schäferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman & Hall/CRC Press, New York (2005)MATH Kythe, P.K., Schäferkotter, M.R.: Handbook of Computational Methods for Integration. Chapman & Hall/CRC Press, New York (2005)MATH
13.
Zurück zum Zitat Lyness, J.N.: The Euler–Maclaurin expansion for the Cauchy principal value integral. Numer. Math. 46, 611–622 (1985)MathSciNetCrossRef Lyness, J.N.: The Euler–Maclaurin expansion for the Cauchy principal value integral. Numer. Math. 46, 611–622 (1985)MathSciNetCrossRef
14.
15.
Zurück zum Zitat Monegato, G.: Definitions, properties and applications of finite-part integrals. J. Comp. Appl. Math. 229, 425–439 (2009)MathSciNetCrossRef Monegato, G.: Definitions, properties and applications of finite-part integrals. J. Comp. Appl. Math. 229, 425–439 (2009)MathSciNetCrossRef
16.
Zurück zum Zitat Monegato, G., Scuderi, L.: Numerical integration of functions with boundary singularities. J. Comp. Appl. Math. 112, 201–214 (1999)MathSciNetCrossRef Monegato, G., Scuderi, L.: Numerical integration of functions with boundary singularities. J. Comp. Appl. Math. 112, 201–214 (1999)MathSciNetCrossRef
17.
Zurück zum Zitat Navot, I.: An extension of the Euler–Maclaurin summation formula to functions with a branch singularity. J. Math. Phys. 40, 271–276 (1961)MathSciNetCrossRef Navot, I.: An extension of the Euler–Maclaurin summation formula to functions with a branch singularity. J. Math. Phys. 40, 271–276 (1961)MathSciNetCrossRef
18.
Zurück zum Zitat Prössdorf, S., Rathsfeld, A.: Quadrature methods for strongly elliptic Cauchy singular integral equations on an interval. In: Dym, H. (ed.) Topics in Analysis and Operator Theory. The Goldberg Anniversary Collection, vol. 2, pp. 435–471. Birkhäuser, Basel (1991) Prössdorf, S., Rathsfeld, A.: Quadrature methods for strongly elliptic Cauchy singular integral equations on an interval. In: Dym, H. (ed.) Topics in Analysis and Operator Theory. The Goldberg Anniversary Collection, vol. 2, pp. 435–471. Birkhäuser, Basel (1991)
19.
Zurück zum Zitat Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis, 2nd edn. McGraw-Hill, New York (1978)MATH Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis, 2nd edn. McGraw-Hill, New York (1978)MATH
20.
Zurück zum Zitat Sag, T.W., Szekeres, G.: Numerical evaluation of high-dimensional integrals. Math. Comp. 18, 245–253 (1964)MathSciNetCrossRef Sag, T.W., Szekeres, G.: Numerical evaluation of high-dimensional integrals. Math. Comp. 18, 245–253 (1964)MathSciNetCrossRef
21.
Zurück zum Zitat Sidi, A.: A new variable transformation for numerical integration. In: Brass, H., Hämmerlin, G. (eds.) Numerical Integration IV. ISNM, vol. number 112, pp. 359–373. Birkhäuser, Basel (1993) Sidi, A.: A new variable transformation for numerical integration. In: Brass, H., Hämmerlin, G. (eds.) Numerical Integration IV. ISNM, vol. number 112, pp. 359–373. Birkhäuser, Basel (1993)
22.
Zurück zum Zitat Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Number 10 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)CrossRef Sidi, A.: Practical Extrapolation Methods: Theory and Applications. Number 10 in Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2003)CrossRef
23.
Zurück zum Zitat Sidi, A.: Extension of a class of periodizing variable transformations for numerical integration. Math. Comp. 75, 327–343 (2006)MathSciNetCrossRef Sidi, A.: Extension of a class of periodizing variable transformations for numerical integration. Math. Comp. 75, 327–343 (2006)MathSciNetCrossRef
24.
Zurück zum Zitat Sidi, A.: A novel class of symmetric and nonsymmetric periodizing variable transformations for numerical integration. J. Sci. Comput. 31, 391–417 (2007)MathSciNetCrossRef Sidi, A.: A novel class of symmetric and nonsymmetric periodizing variable transformations for numerical integration. J. Sci. Comput. 31, 391–417 (2007)MathSciNetCrossRef
25.
Zurück zum Zitat Sidi, A.: Further extension of a class of periodizing variable transformations for numerical integration. J. Comp. Appl. Math. 221, 132–149 (2008)MathSciNetCrossRef Sidi, A.: Further extension of a class of periodizing variable transformations for numerical integration. J. Comp. Appl. Math. 221, 132–149 (2008)MathSciNetCrossRef
26.
Zurück zum Zitat Sidi, A.: Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities. Math. Comp. 81, 2159–2173 (2012)MathSciNetCrossRef Sidi, A.: Euler-Maclaurin expansions for integrals with arbitrary algebraic endpoint singularities. Math. Comp. 81, 2159–2173 (2012)MathSciNetCrossRef
27.
Zurück zum Zitat Sidi, A.: Euler–Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities. Constr. Approx. 36, 331–352 (2012)MathSciNetCrossRef Sidi, A.: Euler–Maclaurin expansions for integrals with arbitrary algebraic-logarithmic endpoint singularities. Constr. Approx. 36, 331–352 (2012)MathSciNetCrossRef
28.
Zurück zum Zitat Sidi, A.: Compact numerical quadrature formulas for hypersingular integrals and integral equations. J. Sci. Comput. 54, 145–176 (2013)MathSciNetCrossRef Sidi, A.: Compact numerical quadrature formulas for hypersingular integrals and integral equations. J. Sci. Comput. 54, 145–176 (2013)MathSciNetCrossRef
29.
Zurück zum Zitat Sidi, A.: Analysis of errors in some recent numerical quadrature formulas for periodic singular and hypersingular integrals via regularization. Appl. Numer. Math. 81, 30–39 (2014)MathSciNetCrossRef Sidi, A.: Analysis of errors in some recent numerical quadrature formulas for periodic singular and hypersingular integrals via regularization. Appl. Numer. Math. 81, 30–39 (2014)MathSciNetCrossRef
30.
Zurück zum Zitat Sidi, A.: Richardson extrapolation on some recent numerical quadrature formulas for singular and hypersingular integrals and its study of stability. J. Sci. Comput. 60, 141–159 (2014)MathSciNetCrossRef Sidi, A.: Richardson extrapolation on some recent numerical quadrature formulas for singular and hypersingular integrals and its study of stability. J. Sci. Comput. 60, 141–159 (2014)MathSciNetCrossRef
31.
Zurück zum Zitat Sidi, A.: Unified compact numerical quadrature formulas for Hadamard finite parts of singular integrals of periodic functions. Calcolo, 58, (2021). Article number 22 Sidi, A.: Unified compact numerical quadrature formulas for Hadamard finite parts of singular integrals of periodic functions. Calcolo, 58, (2021). Article number 22
32.
Zurück zum Zitat Sidi, A.: Exactness and convergence properties of some recent numerical quadrature formulas for supersingular integrals of periodic functions. Calcolo, 58, 2021. Article number 36 Sidi, A.: Exactness and convergence properties of some recent numerical quadrature formulas for supersingular integrals of periodic functions. Calcolo, 58, 2021. Article number 36
33.
Zurück zum Zitat Sidi, A.: Exponential convergence of some recent numerical quadrature methods for Hadamard finite parts of singular integrals of periodic analytic functions. Computer Science Department, Technion-Israel Institute of Technology, Technical report (2021) Sidi, A.: Exponential convergence of some recent numerical quadrature methods for Hadamard finite parts of singular integrals of periodic analytic functions. Computer Science Department, Technion-Israel Institute of Technology, Technical report (2021)
34.
Zurück zum Zitat Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3, 201–231 (1988). (Originally appeared as Technical Report No. 384, Computer Science Dept., Technion–Israel Institute of Technology, (1985), and also as ICASE Report No. 86-50 (1986)) Sidi, A., Israeli, M.: Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput. 3, 201–231 (1988). (Originally appeared as Technical Report No. 384, Computer Science Dept., Technion–Israel Institute of Technology, (1985), and also as ICASE Report No. 86-50 (1986))
35.
Zurück zum Zitat Steffensen, J.F.: Interpolation. Chelsea, New York (1950)MATH Steffensen, J.F.: Interpolation. Chelsea, New York (1950)MATH
36.
Zurück zum Zitat Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002)CrossRef Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 3rd edn. Springer, New York (2002)CrossRef
37.
Zurück zum Zitat Yun, B.I.: An efficient transformation with Gauss quadrature rule for weakly singular integrals. Comm. Numer. Methods Eng. 17, 881–891 (2001)MathSciNetCrossRef Yun, B.I.: An efficient transformation with Gauss quadrature rule for weakly singular integrals. Comm. Numer. Methods Eng. 17, 881–891 (2001)MathSciNetCrossRef
38.
Zurück zum Zitat Yun, B.I., Kim, P.: A new sigmoidal transformation for weakly singular integrals in the boundary integral method. SIAM J. Sci. Comput. 24, 1203–1217 (2003)MathSciNetCrossRef Yun, B.I., Kim, P.: A new sigmoidal transformation for weakly singular integrals in the boundary integral method. SIAM J. Sci. Comput. 24, 1203–1217 (2003)MathSciNetCrossRef
Metadaten
Titel
PVTSI: A novel approach to computation of Hadamard finite parts of nonperiodic singular integrals
verfasst von
Avram Sidi
Publikationsdatum
01.03.2022
Verlag
Springer International Publishing
Erschienen in
Calcolo / Ausgabe 1/2022
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-021-00446-1

Weitere Artikel der Ausgabe 1/2022

Calcolo 1/2022 Zur Ausgabe