Skip to main content
Erschienen in: Wireless Networks 6/2019

25.01.2019

QoE-aware Q-learning based approach to dynamic TDD uplink-downlink reconfiguration in indoor small cell networks

verfasst von: Cho-Hsin Tsai, Kuang-Hsun Lin, Hung-Yu Wei, Fu-Ming Yeh

Erschienen in: Wireless Networks | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The continuing rise of the amount of mobile traffic is daunting, but the deploying of indoor small cells provides exciting opportunities to boost network capacity, extend cell coverage, and eventually thrive on an increased level of customers’ quality of experience (QoE). Unfortunately, in current wireless systems, traffic exhibits great variations in uplink and downlink directions, which introduces challenges of efficient resource allocation. Through using a dynamic time-division duplexing (TDD) method, network operators can flexibly adapt to such variations. However, cross-link interference appears in a dynamic TDD network and seriously suppresses uplink transmission. In this work, we proposed a decentralized QoE-aware reinforcement learning based approach to dynamic TDD reconfiguration. The objective is to maximize the utility function of the users’ QoE in an indoor small cell network. This was done by empowering each base station to select the best configuration to avoid the occurrence of cross-link interference while maintaining as many users that can enjoy their service at a satisfactory QoE as possible. At each episode, after collecting local reports of the QoE state and traffic load of the users, every base station dynamically chooses the best configuration according to the learning model. The learning process repeats itself until convergence. We implemented a simulator to evaluate the performances of the proposed algorithms. The results show that the proposed strategy achieves the best utility of QoE in comparison with other approaches, especially in the direction of the uplink transmission. The study demonstrates the great potential of harnessing reinforcement learning algorithms to attain higher QoE in small cell networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cisco. (2016). Cisco visual networking index: Global mobile data traffic forecast update 2015–2020. Document ID 958959758, White Paper. Cisco. (2016). Cisco visual networking index: Global mobile data traffic forecast update 2015–2020. Document ID 958959758, White Paper.
2.
Zurück zum Zitat NGMN. (2012). NGMN whitepaper small cell backhaul requirements. White Paper. NGMN. (2012). NGMN whitepaper small cell backhaul requirements. White Paper.
3.
Zurück zum Zitat Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications Magazine, 46(9), 59–67.
4.
Zurück zum Zitat Acakpovi, A., Sewordor, H., & Koumadi, K. M. (2013). Performance analysis of femtocell in an indoor cellular network. International Journal of Computer Networks and Wireless Communications (IJCNWC), 3(3), 281–286. Acakpovi, A., Sewordor, H., & Koumadi, K. M. (2013). Performance analysis of femtocell in an indoor cellular network. International Journal of Computer Networks and Wireless Communications (IJCNWC), 3(3), 281–286.
5.
Zurück zum Zitat 3GPP. (2012). Further enhancements to LTE TDD for DL-UL interference management and traffic adaptation. 3GPP TR 36.828, Tech Rep. 3GPP. (2012). Further enhancements to LTE TDD for DL-UL interference management and traffic adaptation. 3GPP TR 36.828, Tech Rep.
6.
Zurück zum Zitat Zhu, D., & Lei, M. (2013). Cluster-based dynamic DL/UL reconfiguration method in centralized RAN TDD with trellis exploration algorithm. In 2013 IEEE on wireless communications and networking conference (WCNC) (pp. 3758–3763). Zhu, D., & Lei, M. (2013). Cluster-based dynamic DL/UL reconfiguration method in centralized RAN TDD with trellis exploration algorithm. In 2013 IEEE on wireless communications and networking conference (WCNC) (pp. 3758–3763).
7.
Zurück zum Zitat Sun, F., Zhao, Y., & Sun, H. (2015). Centralized cell cluster interference mitigation for dynamic TDD DL/UL configuration with traffic adaptation for HTN networks. In 2015 IEEE 82nd vehicular technology conference (VTC Fall) (pp. 1–5). Sun, F., Zhao, Y., & Sun, H. (2015). Centralized cell cluster interference mitigation for dynamic TDD DL/UL configuration with traffic adaptation for HTN networks. In 2015 IEEE 82nd vehicular technology conference (VTC Fall) (pp. 1–5).
9.
Zurück zum Zitat Tsolkas, D., Liotou, E., Passas, N., & Merakos, L. (2013). The need for QoE-driven interference management in femtocell-overlaid cellular networks. In International conference on mobile and ubiquitous systems: Computing, networking, and services (pp. 588–601). New York: Springer. Tsolkas, D., Liotou, E., Passas, N., & Merakos, L. (2013). The need for QoE-driven interference management in femtocell-overlaid cellular networks. In International conference on mobile and ubiquitous systems: Computing, networking, and services (pp. 588–601). New York: Springer.
10.
Zurück zum Zitat Bennis, M., & Niyato, D. (2010). A Q-learning based approach to interference avoidance in self-organized femtocell networks. In 2010 IEEE GLOBECOM workshops (GC Wkshps) (pp. 706–710). Bennis, M., & Niyato, D. (2010). A Q-learning based approach to interference avoidance in self-organized femtocell networks. In 2010 IEEE GLOBECOM workshops (GC Wkshps) (pp. 706–710).
11.
Zurück zum Zitat Wang, Y., & Tao, M. (2014). Dynamic uplink/downlink configuration using q-learning in femtocell networks. In 2014 IEEE/CIC international conference on communications in China (ICCC) (pp. 53–58). Wang, Y., & Tao, M. (2014). Dynamic uplink/downlink configuration using q-learning in femtocell networks. In 2014 IEEE/CIC international conference on communications in China (ICCC) (pp. 53–58).
12.
Zurück zum Zitat 3GPP. (2010). Further advancements for E-UTRA physical layer aspects. 3GPP TR 36.814, Tech Rep. 3GPP. (2010). Further advancements for E-UTRA physical layer aspects. 3GPP TR 36.814, Tech Rep.
13.
Zurück zum Zitat Mianxiong, D., Kimata, T., Sugiura, K., & Zettsu, K. (2014). Quality-of-experience (QoE) in emerging mobile social networks. IEICE Transactions on Information and Systems, 97(10), 2606–2612. Mianxiong, D., Kimata, T., Sugiura, K., & Zettsu, K. (2014). Quality-of-experience (QoE) in emerging mobile social networks. IEICE Transactions on Information and Systems, 97(10), 2606–2612.
14.
Zurück zum Zitat Mitola, J., Guerci, J., Reed, J., Yao, Y. D., Chen, Y., Clancy, T., et al. (2014). Accelerating 5G QoE via public-private spectrum sharing. IEEE Communications Magazine, 52(5), 77–85.CrossRef Mitola, J., Guerci, J., Reed, J., Yao, Y. D., Chen, Y., Clancy, T., et al. (2014). Accelerating 5G QoE via public-private spectrum sharing. IEEE Communications Magazine, 52(5), 77–85.CrossRef
15.
Zurück zum Zitat Chen, Y. C., Chang, J. W., Tsai, C. H., Lin, G. X., Wei, H. Y., & Yeh, F. M. (2017). Max-utility resource allocation for indoor small cell networks. IET Communications, 11(2), 267–272.CrossRef Chen, Y. C., Chang, J. W., Tsai, C. H., Lin, G. X., Wei, H. Y., & Yeh, F. M. (2017). Max-utility resource allocation for indoor small cell networks. IET Communications, 11(2), 267–272.CrossRef
16.
Zurück zum Zitat Alben, L. (1996). Defining the criteria for effective interaction design. Interactions, 3(3), 11–15.CrossRef Alben, L. (1996). Defining the criteria for effective interaction design. Interactions, 3(3), 11–15.CrossRef
17.
Zurück zum Zitat Reiter, U., Brunnström, K., De Moor, K., Larabi, M. C., Pereira, M., Pinheiro, A., et al. (2014). Factors influencing quality of experience. In Quality of experience (pp. 55–72). New York: Springer. Reiter, U., Brunnström, K., De Moor, K., Larabi, M. C., Pereira, M., Pinheiro, A., et al. (2014). Factors influencing quality of experience. In Quality of experience (pp. 55–72). New York: Springer.
18.
Zurück zum Zitat Kelly, F. (1997). Charging and rate control for elastic traffic. European Transactions on Telecommunications, 8(1), 33–37.CrossRef Kelly, F. (1997). Charging and rate control for elastic traffic. European Transactions on Telecommunications, 8(1), 33–37.CrossRef
19.
20.
Zurück zum Zitat Casas, P., & Schatz, R. (2014). Quality of experience in cloud services: survey and measurements. Computer Networks, 68, 149–165.CrossRef Casas, P., & Schatz, R. (2014). Quality of experience in cloud services: survey and measurements. Computer Networks, 68, 149–165.CrossRef
21.
Zurück zum Zitat Holma, H., & Toskala, A. (2007). HSDPA/HSUPA for UMTS: High speed radio access for mobile communications. Hoboken: Wiley. Holma, H., & Toskala, A. (2007). HSDPA/HSUPA for UMTS: High speed radio access for mobile communications. Hoboken: Wiley.
22.
Zurück zum Zitat Holma, H., & Toskala, A. (2011). LTE for UMTS: Evolution to LTE-advanced. Hoboken: Wiley.CrossRef Holma, H., & Toskala, A. (2011). LTE for UMTS: Evolution to LTE-advanced. Hoboken: Wiley.CrossRef
23.
Zurück zum Zitat Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.CrossRef Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement learning: A survey. Journal of Artificial Intelligence Research, 4, 237–285.CrossRef
24.
Zurück zum Zitat Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.MATH Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.MATH
25.
Zurück zum Zitat Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.CrossRef
26.
Zurück zum Zitat Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., et al. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484–489.CrossRef
27.
Zurück zum Zitat Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, University of Cambridge, England. Watkins, C. J. C. H. (1989). Learning from delayed rewards. Ph.D. thesis, University of Cambridge, England.
28.
Zurück zum Zitat Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.MATH Watkins, C. J., & Dayan, P. (1992). Q-learning. Machine Learning, 8(3–4), 279–292.MATH
29.
Zurück zum Zitat Bellman, R. E., & Dreyfus, S. E. (2015). Applied dynamic programming. Princeton: Princeton University Press.MATH Bellman, R. E., & Dreyfus, S. E. (2015). Applied dynamic programming. Princeton: Princeton University Press.MATH
30.
Zurück zum Zitat Ross, S. M. (2014). Introduction to stochastic dynamic programming. London: Academic Press. Ross, S. M. (2014). Introduction to stochastic dynamic programming. London: Academic Press.
31.
Zurück zum Zitat Gomes, E. R., & Kowalczyk, R. (2009). Dynamic analysis of multiagent Q-learning with epsilon-greedy exploration. In Proceedings of the 26th annual international conference on machine learning (p. 369). Gomes, E. R., & Kowalczyk, R. (2009). Dynamic analysis of multiagent Q-learning with epsilon-greedy exploration. In Proceedings of the 26th annual international conference on machine learning (p. 369).
32.
Zurück zum Zitat Poole, D. L., & Mackworth, A. K. (2010). Artificial intelligence: Foundations of computational agents. Cambridge: Cambridge University Press.CrossRefMATH Poole, D. L., & Mackworth, A. K. (2010). Artificial intelligence: Foundations of computational agents. Cambridge: Cambridge University Press.CrossRefMATH
33.
Zurück zum Zitat Lauer, M., & Riedmiller, M. (2000). An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In Proceedings of the seventeenth international conference on machine learning, Citeseer. Lauer, M., & Riedmiller, M. (2000). An algorithm for distributed reinforcement learning in cooperative multi-agent systems. In Proceedings of the seventeenth international conference on machine learning, Citeseer.
34.
Zurück zum Zitat Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning rate. Artificial Intelligence, 136(2), 215–250.MathSciNetCrossRefMATH Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning rate. Artificial Intelligence, 136(2), 215–250.MathSciNetCrossRefMATH
35.
Zurück zum Zitat Abdoos, M., Mozayani, N., & Bazzan, A. L. (2011). Traffic light control in non-stationary environments based on multi agent Q-learning. In 2011 14th international IEEE conference on intelligent transportation systems (ITSC) (pp. 1580–1585). Abdoos, M., Mozayani, N., & Bazzan, A. L. (2011). Traffic light control in non-stationary environments based on multi agent Q-learning. In 2011 14th international IEEE conference on intelligent transportation systems (ITSC) (pp. 1580–1585).
36.
Zurück zum Zitat Miao, G., Zander, J., Sung, K. W., & Slimane, S. B. (2016). Fundamentals of mobile data networks. Cambridge: Cambridge University Press.CrossRef Miao, G., Zander, J., Sung, K. W., & Slimane, S. B. (2016). Fundamentals of mobile data networks. Cambridge: Cambridge University Press.CrossRef
37.
Zurück zum Zitat Lin, Y. T., Chao, C. C., & Wei, H. Y. (2015). Dynamic TDD interference mitigation by using Soft Reconfiguration. In 2015 11th international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE) (pp. 352–357). Lin, Y. T., Chao, C. C., & Wei, H. Y. (2015). Dynamic TDD interference mitigation by using Soft Reconfiguration. In 2015 11th international conference on heterogeneous networking for quality, reliability, security and robustness (QSHINE) (pp. 352–357).
38.
Zurück zum Zitat Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the tenth international conference on machine learning (pp. 330–337). Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative agents. In Proceedings of the tenth international conference on machine learning (pp. 330–337).
Metadaten
Titel
QoE-aware Q-learning based approach to dynamic TDD uplink-downlink reconfiguration in indoor small cell networks
verfasst von
Cho-Hsin Tsai
Kuang-Hsun Lin
Hung-Yu Wei
Fu-Ming Yeh
Publikationsdatum
25.01.2019
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2019
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-019-01941-8

Weitere Artikel der Ausgabe 6/2019

Wireless Networks 6/2019 Zur Ausgabe

Neuer Inhalt