Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2021

29.03.2021 | Technical Article

Quantification of Shape Memory Alloy Damping Capabilities Through the Prediction of Inherent Behavioral Aspects

verfasst von: Anargyros A. Karakalas, Theodoros T. Machairas, Dimitris C. Lagoudas, Dimitris A. Saravanos

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work the time response of pseudoelastic Shape Memory Alloy (SMA) wires is numerically simulated. In particular, the effect of their operation under partial phase transformation is investigated and quantified. Additionally, the effect of the thermomechanical coupling under cyclic operation is evaluated both under adiabatic and natural convection conditions. To this end, proper finite element models are generated considering a low-frequency harmonic sinusoidal excitation. The effect of the partial transformation and thermomechanical coupling on the operation of the SMA is highlighted by comparison with respective results acquired by finite element models which neglect the modified hardening function that accounts for the partial loops. The results suggest that the latent heat produced during forward transformation highly affects the energy dissipation potential of SMAs. The hardening behavior also affects the transformation evolution and therefore impacts the amount of heat generation/absorption. Although both phenomena, when accounted for, result in the prediction of an altered hysteresis area and consequently different dissipation capabilities, the scope of the paper is to highlight their importance on the calculated values of dissipated energy and loss factor. These quantities are of particular interest since they constitute crucial design parameters for the development of smart dampers employing SMA materials.
Literatur
1.
Zurück zum Zitat Dimitris C (2008) Lagoudas, shape memory alloys: modeling and engineering applications. Springer, Berlin Dimitris C (2008) Lagoudas, shape memory alloys: modeling and engineering applications. Springer, Berlin
2.
Zurück zum Zitat Otsuka K (1998) Shape memory materials. Cambridge University Press, Cambridge Otsuka K (1998) Shape memory materials. Cambridge University Press, Cambridge
5.
Zurück zum Zitat Tanaka K (1986) Thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech Int J Struct Mech Mater Sci 18(3):251–263 Tanaka K (1986) Thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mech Int J Struct Mech Mater Sci 18(3):251–263
11.
13.
Zurück zum Zitat Karakalas AA (2019) Thermomechanically coupled analysis & experimental investigation of morphing structures with shape memory alloy actuators operating under partial transformation with a focus on active load control. University of Patras, Patras, p 2019 Karakalas AA (2019) Thermomechanically coupled analysis & experimental investigation of morphing structures with shape memory alloy actuators operating under partial transformation with a focus on active load control. University of Patras, Patras, p 2019
17.
Zurück zum Zitat Likhachev AA (1995) Differential equation of hysteresis: application to partial martensitic transformation in shape memory alloys. Scr Metall Mater 32(4):633–636CrossRef Likhachev AA (1995) Differential equation of hysteresis: application to partial martensitic transformation in shape memory alloys. Scr Metall Mater 32(4):633–636CrossRef
20.
Zurück zum Zitat Feng Y, Rabbath CA, Su CY (2011) Inverse Duhem model based robust adaptive control for flap positioning system with SMA actuators, vol 18. IFAC, Geneva Feng Y, Rabbath CA, Su CY (2011) Inverse Duhem model based robust adaptive control for flap positioning system with SMA actuators, vol 18. IFAC, Geneva
38.
Zurück zum Zitat Matsuzaki Y, Funami K, Naito H (2002) Inner loops of pseudoelastic hysteresis of shape memory alloys: Preisach approach. Smart structures and materials 2002: active materials: behavior and mechanics, vol 4699. International Society for Optics and Photonics, Bellingham, pp 355–364. https://doi.org/10.1117/12.474993CrossRef Matsuzaki Y, Funami K, Naito H (2002) Inner loops of pseudoelastic hysteresis of shape memory alloys: Preisach approach. Smart structures and materials 2002: active materials: behavior and mechanics, vol 4699. International Society for Optics and Photonics, Bellingham, pp 355–364. https://​doi.​org/​10.​1117/​12.​474993CrossRef
43.
Zurück zum Zitat Prasad NE, Wanhill RJH (2016) Aerospace materials and material technology, vol 1. Springer, Singapore Prasad NE, Wanhill RJH (2016) Aerospace materials and material technology, vol 1. Springer, Singapore
45.
Zurück zum Zitat Saravanos D, Machairas T, Solomou A, Karakalas A (2016) Shape memory alloy morphing airfoil sections. Adv Sci Technol 101:112–120CrossRef Saravanos D, Machairas T, Solomou A, Karakalas A (2016) Shape memory alloy morphing airfoil sections. Adv Sci Technol 101:112–120CrossRef
74.
Zurück zum Zitat Li S, Hedayati Dezfuli F, Wang J, Alam MS (2020) Performance-based seismic loss assessment of isolated simply-supported highway bridges retrofitted with different shape memory alloy cable restrainers in a life-cycle context. J Intell Mater Syst Struct 31(8):1053–1075. https://doi.org/10.1177/1045389X20906018CrossRef Li S, Hedayati Dezfuli F, Wang J, Alam MS (2020) Performance-based seismic loss assessment of isolated simply-supported highway bridges retrofitted with different shape memory alloy cable restrainers in a life-cycle context. J Intell Mater Syst Struct 31(8):1053–1075. https://​doi.​org/​10.​1177/​1045389X20906018​CrossRef
88.
Zurück zum Zitat Simulia (2014) ABAQUS 6.14. User subroutines reference guide, 1.1.41 UMAT. Dassault Systèmes Simulia Corp., Providence, RI, USA Simulia (2014) ABAQUS 6.14. User subroutines reference guide, 1.1.41 UMAT. Dassault Systèmes Simulia Corp., Providence, RI, USA
91.
Zurück zum Zitat Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 8th edn. Wiley, Hoboken Bergman TL, Lavine AS, Incropera FP, DeWitt DP (2011) Fundamentals of heat and mass transfer, 8th edn. Wiley, Hoboken
93.
Zurück zum Zitat Ashby MF (2011) Materials selection in mechanical design. Elsevier, Amsterdam Ashby MF (2011) Materials selection in mechanical design. Elsevier, Amsterdam
Metadaten
Titel
Quantification of Shape Memory Alloy Damping Capabilities Through the Prediction of Inherent Behavioral Aspects
verfasst von
Anargyros A. Karakalas
Theodoros T. Machairas
Dimitris C. Lagoudas
Dimitris A. Saravanos
Publikationsdatum
29.03.2021
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2021
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-021-00313-6

Weitere Artikel der Ausgabe 1/2021

Shape Memory and Superelasticity 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.