Skip to main content

2024 | OriginalPaper | Buchkapitel

Quantifying Changes in Downstream Flow Characteristics in Sinuous Channels Due to the Series of Floodplain Sand Mining Pits

verfasst von : Om Prakash Maurya, Suresh Modalavalasa, Subashisa Dutta

Erschienen in: Advances in River Corridor Research and Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the impact of sand mining pits on downstream flow characteristics within sinuous channels. Three distinct scenarios were analyzed: sinuous channels without mining pits (experimentally at the IIT Guwahati Fluvial Eco-Hydraulic Laboratory and numerically using FLOW-3D HYDRO v1.0 u1), sinuous channels with two mining pits, and sinuous channels with three mining pits (both analyzed numerically). The main aim of this study is to differentiate between downstream flow characteristics in the main sinuous channel with two sand mining pits and those with three mining pits. The study will specifically focus on various flow parameters, including streamwise velocity, secondary current, vorticity, and turbulence intensity. Key findings include a decreasing streamwise velocity magnitude from the inner to the outer bank, with a notable reduction in the core zone of streamwise velocity in scenarios involving mining pits. Additionally, the concentration of secondary currents is lower near the outer bank compared to scenarios with three mining pits. The presence of mining pits intensifies streamwise vorticity near the inner bank and induces clockwise rotation of secondary vorticity in mining pit scenarios. Turbulence intensity is more pronounced near the inner bank in scenarios with mining pits. There is an error range of 18 to 34% when comparing the numerical simulations to the experimental data. These findings provide valuable insights into the hydrodynamic influences on flow within sinuous channels impacted by sand mining pits. Future research could extend this study by incorporating sediment transport models to enhance our understanding of sediment movement in such environments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aliu IR, Akoteyon IS, Soladoye O (2022) Sustaining urbanization while undermining sustainability: the socio-environmental characterization of coastal sand mining in Lagos Nigeria. GeoJournal 87(6):5265–5285 Aliu IR, Akoteyon IS, Soladoye O (2022) Sustaining urbanization while undermining sustainability: the socio-environmental characterization of coastal sand mining in Lagos Nigeria. GeoJournal 87(6):5265–5285
2.
Zurück zum Zitat Arora S et al (203) Turbulence structure and bank erosion process in a dredged channel. River Res Appl 39.4:613–628 Arora S et al (203) Turbulence structure and bank erosion process in a dredged channel. River Res Appl 39.4:613–628
3.
Zurück zum Zitat Ashraf MA et al (2011) Sand mining effects, causes and concerns: a case study from Bestari Jaya, Selangor, Peninsular Malaysia. Sci Res Essays 6.6:1216–1231 Ashraf MA et al (2011) Sand mining effects, causes and concerns: a case study from Bestari Jaya, Selangor, Peninsular Malaysia. Sci Res Essays 6.6:1216–1231
4.
Zurück zum Zitat Azar MG, Namaee MR, Rostami M (2012) Evaluating a numerical model to simulate the variation of river bed due to a mining pit based on experimental data. Asian J Appl Sci 5.3:154–163 Azar MG, Namaee MR, Rostami M (2012) Evaluating a numerical model to simulate the variation of river bed due to a mining pit based on experimental data. Asian J Appl Sci 5.3:154–163
5.
Zurück zum Zitat Barman B, Kumar B, Sarma AK (2018) Turbulent flow structures and geomorphic characteristics of a mining affected alluvial channel. Earth Surf Proces Landf 43:1811–1824CrossRef Barman B, Kumar B, Sarma AK (2018) Turbulent flow structures and geomorphic characteristics of a mining affected alluvial channel. Earth Surf Proces Landf 43:1811–1824CrossRef
6.
Zurück zum Zitat Barman B, Kumar B, Sarma AK (2019) Dynamic characterization of the migration of a mining pit in an alluvial channel. Int J Sediment Res 34:155–165CrossRef Barman B, Kumar B, Sarma AK (2019) Dynamic characterization of the migration of a mining pit in an alluvial channel. Int J Sediment Res 34:155–165CrossRef
7.
Zurück zum Zitat Barman B, Sarma AK, Kumar B (2020) Mining pit migration of an alluvial channel: experimental and numerical investigations. ISH J Hydraul Eng 26.4:448–456 Barman B, Sarma AK, Kumar B (2020) Mining pit migration of an alluvial channel: experimental and numerical investigations. ISH J Hydraul Eng 26.4:448–456
8.
Zurück zum Zitat Boxall JB, Guymer I, Marion A (2003) Transverse mixing in sinuous natural open channel flows. J Hydraul Res 41(2):153–165CrossRef Boxall JB, Guymer I, Marion A (2003) Transverse mixing in sinuous natural open channel flows. J Hydraul Res 41(2):153–165CrossRef
9.
Zurück zum Zitat Choi S-U, Park M, Kang H (2007) Numerical simulations of cellular secondary currents and suspended sediment transport in open-channel flows over smooth-rough bed strips. J Hydraul Res 45(6):829–840CrossRef Choi S-U, Park M, Kang H (2007) Numerical simulations of cellular secondary currents and suspended sediment transport in open-channel flows over smooth-rough bed strips. J Hydraul Res 45(6):829–840CrossRef
10.
Zurück zum Zitat Colebrook CF, White CM (1937) Experiments with fluid friction in roughened pipes. Proceed Royal Soc London Ser A Math Phys Sci 161.906:367–381 Colebrook CF, White CM (1937) Experiments with fluid friction in roughened pipes. Proceed Royal Soc London Ser A Math Phys Sci 161.906:367–381
11.
Zurück zum Zitat Dixit A, Dutta S, Nandi KK, Maurya OP, Mahanta C (2024) Sediment transport dynamics in mixed bed during consecutive flood waves: insights from numerical simulation. AGU23 Dixit A, Dutta S, Nandi KK, Maurya OP, Mahanta C (2024) Sediment transport dynamics in mixed bed during consecutive flood waves: insights from numerical simulation. AGU23
12.
Zurück zum Zitat Flow Science Inc, Santa Fe, NM, USA (2023) FLOW-3D® Version 2023R1 Users Manual [Online]. Accessed on: June 6, 2023 Flow Science Inc, Santa Fe, NM, USA (2023) FLOW-3D® Version 2023R1 Users Manual [Online]. Accessed on: June 6, 2023
13.
Zurück zum Zitat Haghnazar H, Saneie M (2019) Impacts of pit distance and location on river sand mining management. Model Earth Syst Environ 5:1463–1472CrossRef Haghnazar H, Saneie M (2019) Impacts of pit distance and location on river sand mining management. Model Earth Syst Environ 5:1463–1472CrossRef
14.
Zurück zum Zitat Hwang Y, Cossu C (2010) Self-sustained process at large scales in turbulent channel flow. Phys Rev Lett 105(4):044505CrossRef Hwang Y, Cossu C (2010) Self-sustained process at large scales in turbulent channel flow. Phys Rev Lett 105(4):044505CrossRef
15.
Zurück zum Zitat Jamieson EC, Rennie CD, Townsend RD (2013) 3D flow and sediment dynamics in a laboratory channel bend with and without stream barbs. J Hydraul Eng 139(2):154–166CrossRef Jamieson EC, Rennie CD, Townsend RD (2013) 3D flow and sediment dynamics in a laboratory channel bend with and without stream barbs. J Hydraul Eng 139(2):154–166CrossRef
16.
Zurück zum Zitat Jiang L, Diao M, Sun H, Ren Y (2018) Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face. Water 10(11):1663 Jiang L, Diao M, Sun H, Ren Y (2018) Numerical modeling of flow over a rectangular broad-crested weir with a sloped upstream face. Water 10(11):1663
17.
Zurück zum Zitat Johannesson H, Parker G (1989) Secondary flow in mildly sinuous channel. J Hydraul Eng 115(3):289–308CrossRef Johannesson H, Parker G (1989) Secondary flow in mildly sinuous channel. J Hydraul Eng 115(3):289–308CrossRef
18.
Zurück zum Zitat Kassem A, Imran J (2004) Three-dimensional modeling of density current. II. Flow in sinuous confined and uncontined channels. J Hydraul Res 42(6):591–602CrossRef Kassem A, Imran J (2004) Three-dimensional modeling of density current. II. Flow in sinuous confined and uncontined channels. J Hydraul Res 42(6):591–602CrossRef
19.
Zurück zum Zitat Keevil GM, Peakall J, Best JL, Amos KJ (2006) Flow structure in sinuous submarine channels: velocity and turbulence structure of an experimental submarine channel. Mar Geol 229(3–4):241–257CrossRef Keevil GM, Peakall J, Best JL, Amos KJ (2006) Flow structure in sinuous submarine channels: velocity and turbulence structure of an experimental submarine channel. Mar Geol 229(3–4):241–257CrossRef
20.
Zurück zum Zitat Koehnken L et al (2020) Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res Appl 36.3:362–370 Koehnken L et al (2020) Impacts of riverine sand mining on freshwater ecosystems: a review of the scientific evidence and guidance for future research. River Res Appl 36.3:362–370
21.
Zurück zum Zitat Lade AD, Deshpande V, Kumar B, Oliveto G (2019) On the morphodynamic alterations around bridge piers under the influence of instream mining. Water 11:1676CrossRef Lade AD, Deshpande V, Kumar B, Oliveto G (2019) On the morphodynamic alterations around bridge piers under the influence of instream mining. Water 11:1676CrossRef
22.
Zurück zum Zitat Lamb V, Marschke M, Rigg J (2019) Trading sand, undermining lives: omitted livelihoods in the global trade in sand. Ann Am Assoc Geogr 109(5):1511–1528 Lamb V, Marschke M, Rigg J (2019) Trading sand, undermining lives: omitted livelihoods in the global trade in sand. Ann Am Assoc Geogr 109(5):1511–1528
23.
Zurück zum Zitat Majedi Asl M, Valizadeh S, Ashkan F, Hasanpour E (2020) Modeling scour depth around the inclined single and group piers. Water Soil Sci 30(3):61–74 Majedi Asl M, Valizadeh S, Ashkan F, Hasanpour E (2020) Modeling scour depth around the inclined single and group piers. Water Soil Sci 30(3):61–74
24.
Zurück zum Zitat Maurya OP et al (2022a) Effect of sinuosity variation on flow characteristics of sand mined sinuous channel using numerical modeling Maurya OP et al (2022a) Effect of sinuosity variation on flow characteristics of sand mined sinuous channel using numerical modeling
25.
Zurück zum Zitat Maurya OP et al (2022b) Flow hydrodynamics influences due to flood plain sand mining in a meandering channel. North-east research conclave. Springer Nature Singapore, Singapore, pp 245–251 Maurya OP et al (2022b) Flow hydrodynamics influences due to flood plain sand mining in a meandering channel. North-east research conclave. Springer Nature Singapore, Singapore, pp 245–251
26.
Zurück zum Zitat Maurya OP et al (2022c) Numerical investigation of various turbulence models for a sinuous channel with sand mining pit. International conference on river corridor research and management. Springer Nature Singapore, Singapore Maurya OP et al (2022c) Numerical investigation of various turbulence models for a sinuous channel with sand mining pit. International conference on river corridor research and management. Springer Nature Singapore, Singapore
27.
Zurück zum Zitat Maurya OP, Modalavalasa S, Nandi KK, Pradhan C, Dutta S (2023) Quantifying the influence of floodplain vegetation and sand mining pit on the hydrodynamics of low sinuous channels: an integrated experimental and numerical approach. AGU23 Maurya OP, Modalavalasa S, Nandi KK, Pradhan C, Dutta S (2023) Quantifying the influence of floodplain vegetation and sand mining pit on the hydrodynamics of low sinuous channels: an integrated experimental and numerical approach. AGU23
28.
Zurück zum Zitat Minor B, Rennie CD, Townsend RD (2007) Barbs” for river bend bank protection: application of a three-dimensional numerical model. Can J Civ Eng 34(9):1087–1095CrossRef Minor B, Rennie CD, Townsend RD (2007) Barbs” for river bend bank protection: application of a three-dimensional numerical model. Can J Civ Eng 34(9):1087–1095CrossRef
29.
Zurück zum Zitat Minor B et al (2007a) Three-dimensional flow in a barb field. WIT Trans Ecol Environ 104 Minor B et al (2007a) Three-dimensional flow in a barb field. WIT Trans Ecol Environ 104
30.
Zurück zum Zitat Modalavalasa S et al (2022) Combined effect of bridge piers and floodplain vegetation on main channel hydraulics. Exp Therm Fluid Sci 136:110669 Modalavalasa S et al (2022) Combined effect of bridge piers and floodplain vegetation on main channel hydraulics. Exp Therm Fluid Sci 136:110669
31.
Zurück zum Zitat Modalavalasa S et al (2023) Laboratory investigation on flow structure and turbulent characteristics in low sinuous compound channels with vegetated floodplains. J Hydrol 618:129178 Modalavalasa S et al (2023) Laboratory investigation on flow structure and turbulent characteristics in low sinuous compound channels with vegetated floodplains. J Hydrol 618:129178
32.
Zurück zum Zitat Naik B, Khatua KK, Wright N, Sleigh A, Singh P (2018) Numerical modeling of converging compound channel flow. ISH J Hydraul Eng 24(3):285–297 Naik B, Khatua KK, Wright N, Sleigh A, Singh P (2018) Numerical modeling of converging compound channel flow. ISH J Hydraul Eng 24(3):285–297
33.
Zurück zum Zitat Padmalal D et al (2008) Environmental effects of river sand mining: a case from the river catchments of Vembanad lake, Southwest coast of India. Environ Geol 54:879–889CrossRef Padmalal D et al (2008) Environmental effects of river sand mining: a case from the river catchments of Vembanad lake, Southwest coast of India. Environ Geol 54:879–889CrossRef
34.
Zurück zum Zitat Padmalal D et al (2014) Sand mining: the world scenario. Sand Min Environ Impacts Sel Case Stud 57–80 Padmalal D et al (2014) Sand mining: the world scenario. Sand Min Environ Impacts Sel Case Stud 57–80
35.
Zurück zum Zitat Rentier ES, Cammeraat LH (2022) The environmental impacts of river sand mining. Sci Total Environ 838:155877CrossRef Rentier ES, Cammeraat LH (2022) The environmental impacts of river sand mining. Sci Total Environ 838:155877CrossRef
36.
Zurück zum Zitat Rhoads BL, Massey KD (2012) Flow structure and channel change in a sinuous grass-lined stream within an agricultural drainage ditch: implications for ditch stability and aquatic habitat. River Res Appl 28(1):39–52CrossRef Rhoads BL, Massey KD (2012) Flow structure and channel change in a sinuous grass-lined stream within an agricultural drainage ditch: implications for ditch stability and aquatic habitat. River Res Appl 28(1):39–52CrossRef
37.
Zurück zum Zitat Saviour MN (2012) Environmental impact of soil and sand mining: a review. Int J Sci Environ Technol 1.3:125–134 Saviour MN (2012) Environmental impact of soil and sand mining: a review. Int J Sci Environ Technol 1.3:125–134
38.
Zurück zum Zitat Taye J, Sharma A, Kumar B (2023) Effect of downward seepage on turbulence and morphology in mobile boundary sinuous channel. Phys Fluids 35.1 Taye J, Sharma A, Kumar B (2023) Effect of downward seepage on turbulence and morphology in mobile boundary sinuous channel. Phys Fluids 35.1
39.
Zurück zum Zitat Taye J et al (2021) Turbulent characteristics of sinuous river bend. ISH J Hydraul Eng 27.sup1:256–263 Taye J et al (2021) Turbulent characteristics of sinuous river bend. ISH J Hydraul Eng 27.sup1:256–263
40.
Zurück zum Zitat Teo FY et al (2017) River sand mining capacity in Malaysia. Proceedings of the 37th IAHR world congress, vol 6865 Teo FY et al (2017) River sand mining capacity in Malaysia. Proceedings of the 37th IAHR world congress, vol 6865
41.
Zurück zum Zitat Wang Z-Q, Cheng N-S (2005) Secondary flows over artificial bed strips. Adv Water Resour 28(5):441–450CrossRef Wang Z-Q, Cheng N-S (2005) Secondary flows over artificial bed strips. Adv Water Resour 28(5):441–450CrossRef
42.
Zurück zum Zitat Wang H, Liu X, Wang H (2016) The Yangtze River floodplain: threats and rehabilitation. American Fisheries Society Symposium, vol 84. American Fisheries Society, Bethesda, MD, USA Wang H, Liu X, Wang H (2016) The Yangtze River floodplain: threats and rehabilitation. American Fisheries Society Symposium, vol 84. American Fisheries Society, Bethesda, MD, USA
43.
Zurück zum Zitat Wang X, Mohammadian A, Rennie CD (2022) Influence of negatively buoyant jets on a strongly curved open-channel flow using RANS models with experimental data. Water 14(3):347 Wang X, Mohammadian A, Rennie CD (2022) Influence of negatively buoyant jets on a strongly curved open-channel flow using RANS models with experimental data. Water 14(3):347
44.
Zurück zum Zitat Yen TP, Rohasliney H (2013) Status of water quality subject to sand mining in the Kelantan River, Kelantan. Trop Life Sci Res 24.1:19 Yen TP, Rohasliney H (2013) Status of water quality subject to sand mining in the Kelantan River, Kelantan. Trop Life Sci Res 24.1:19
45.
Zurück zum Zitat Yuill, Brendan T., et al. “Morphodynamic evolution of a lower Mississippi River channel bar after sand mining.“ Earth surface processes and landforms 41.4 (2016): 526–542. Yuill, Brendan T., et al. “Morphodynamic evolution of a lower Mississippi River channel bar after sand mining.“ Earth surface processes and landforms 41.4 (2016): 526–542.
46.
Zurück zum Zitat Zidan ARA (2015) A review of friction formulae in open channel flow. Int Water Technol J 5(1):43–57 Zidan ARA (2015) A review of friction formulae in open channel flow. Int Water Technol J 5(1):43–57
47.
Zurück zum Zitat Zolghadr M et al (2021) Migration of sand mining pit in rivers: an experimental, numerical and case study. Measurement 172:108944 Zolghadr M et al (2021) Migration of sand mining pit in rivers: an experimental, numerical and case study. Measurement 172:108944
Metadaten
Titel
Quantifying Changes in Downstream Flow Characteristics in Sinuous Channels Due to the Series of Floodplain Sand Mining Pits
verfasst von
Om Prakash Maurya
Suresh Modalavalasa
Subashisa Dutta
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-1227-4_7