Skip to main content
Erschienen in: Designs, Codes and Cryptography 2/2022

19.01.2022

Quantum codes from \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes

verfasst von: Soumak Biswas, Maheshanand Bhaintwal

Erschienen in: Designs, Codes and Cryptography | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new class of binary quantum codes from cyclic codes over \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \), \(u^4=0\), is introduced. The generator polynomials of \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes of length (rs) are obtained through the factorization of \(x^r-1\) and \(x^s-1\) into pairwise coprime monic polynomials over \(\mathbb {Z}_2\), where r and s are odd positive integers. A minimal spanning set for these codes is obtained. Under some restricted conditions, the structure of the duals of \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4\rangle \)-cyclic codes is also determined. Necessary and sufficient conditions for a \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic code of this restricted class to contain its dual or to be self-orthogonal are obtained. A new Gray map is defined, and the binary quantum codes are obtained by using the Calderbank-Shor-Steane construction on self-orthogonal or dual containing \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes. Some examples of binary quantum codes with good parameters constructed from \(\mathbb {Z}_2\mathbb {Z}_2[u]/\langle u^4 \rangle \)-cyclic codes are given.
Literatur
1.
Zurück zum Zitat Abualrub T., Siap I.: Cyclic codes over the rings \(\mathbb{Z}_2+u\mathbb{Z}_2\) and \(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2\). Des. Codes Cryptogr. 42(3), 273–287 (2007).MathSciNetCrossRef Abualrub T., Siap I.: Cyclic codes over the rings \(\mathbb{Z}_2+u\mathbb{Z}_2\) and \(\mathbb{Z}_2+u\mathbb{Z}_2+u^2\mathbb{Z}_2\). Des. Codes Cryptogr. 42(3), 273–287 (2007).MathSciNetCrossRef
2.
Zurück zum Zitat Aydogdu I., Siap I.: The structure of \(\mathbb{Z}_2\mathbb{Z}_{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013).MathSciNetCrossRef Aydogdu I., Siap I.: The structure of \(\mathbb{Z}_2\mathbb{Z}_{2^s}\)-additive codes: bounds on the minimum distance. Appl. Math. Inf. Sci. 7(6), 2271–2278 (2013).MathSciNetCrossRef
3.
Zurück zum Zitat Aydogdu I., Siap I.: On \(\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}\)-additive codes. Linear Multilinear Algebra 63(10), 2089–2102 (2015).MathSciNetCrossRef Aydogdu I., Siap I.: On \(\mathbb{Z}_{p^r}\mathbb{Z}_{p^s}\)-additive codes. Linear Multilinear Algebra 63(10), 2089–2102 (2015).MathSciNetCrossRef
4.
Zurück zum Zitat Aydogdu I., Abualrub T., Siap I.: On \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015).MathSciNetCrossRef Aydogdu I., Abualrub T., Siap I.: On \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-additive codes. Int. J. Comput. Math. 92(9), 1806–1814 (2015).MathSciNetCrossRef
5.
Zurück zum Zitat Aydogdu I., Abualrub T., Siap I.: \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2017).CrossRef Aydogdu I., Abualrub T., Siap I.: \(\mathbb{Z}_2\mathbb{Z}_2[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2017).CrossRef
6.
Zurück zum Zitat Aydogdu I., Siap I., Ten-Valls R.: On the structure of \(\mathbb{Z}_2\mathbb{Z}_2[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017).MathSciNetCrossRef Aydogdu I., Siap I., Ten-Valls R.: On the structure of \(\mathbb{Z}_2\mathbb{Z}_2[u^3]\)-linear and cyclic codes. Finite Fields Appl. 48, 241–260 (2017).MathSciNetCrossRef
7.
Zurück zum Zitat Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010).MathSciNetCrossRef Borges J., Fernández-Córdoba C., Pujol J., Rifà J., Villanueva M.: \(\mathbb{Z}_2\mathbb{Z}_4\)-linear codes: generator matrices and duality. Des. Codes Cryptogr. 54(2), 167–179 (2010).MathSciNetCrossRef
8.
Zurück zum Zitat Borges J., Fernández-Córdoba C., Ten-Valls R.: \(\mathbb{Z}_2\)-double cyclic codes. Des. Codes Cryptogr. 86(3), 463–479 (2018).MathSciNetCrossRef Borges J., Fernández-Córdoba C., Ten-Valls R.: \(\mathbb{Z}_2\)-double cyclic codes. Des. Codes Cryptogr. 86(3), 463–479 (2018).MathSciNetCrossRef
9.
Zurück zum Zitat Bosma W., Cannon J.: Handbook of Magma Functions. University of Sydney, Sydney (1995). Bosma W., Cannon J.: Handbook of Magma Functions. University of Sydney, Sydney (1995).
10.
Zurück zum Zitat Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996).CrossRef Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996).CrossRef
11.
Zurück zum Zitat Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRef Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A.: Quantum error correction via codes over \(GF(4)\). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).MathSciNetCrossRef
12.
Zurück zum Zitat Dinh H.Q., López-Permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50(8), 1728–1744 (2004).MathSciNetCrossRef Dinh H.Q., López-Permouth S.R.: Cyclic and negacyclic codes over finite chain rings. IEEE Trans. Inf. Theory 50(8), 1728–1744 (2004).MathSciNetCrossRef
16.
Zurück zum Zitat Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preperata, Goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).CrossRef Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \(\mathbb{Z}_4\)-linearity of Kerdock, Preperata, Goethals and related codes. IEEE Trans. Inf. Theory 40(2), 301–319 (1994).CrossRef
17.
Zurück zum Zitat Kai X., Zhu S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_4+u\mathbb{F}_4\). Int. J. Quantum Inf. 9(2), 689–700 (2011).MathSciNetCrossRef Kai X., Zhu S.: Quaternary construction of quantum codes from cyclic codes over \(\mathbb{F}_4+u\mathbb{F}_4\). Int. J. Quantum Inf. 9(2), 689–700 (2011).MathSciNetCrossRef
18.
Zurück zum Zitat Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006).MathSciNetCrossRef Ketkar A., Klappenecker A., Kumar S., Sarvepalli P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006).MathSciNetCrossRef
19.
Zurück zum Zitat Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010).CrossRef Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010).CrossRef
20.
Zurück zum Zitat Qian J., Ma W., Wang X.: Quantum error-correcting codes from quasi-cyclic codes. Int. J. Quantum Inf. 6, 1263–1269 (2008).CrossRef Qian J., Ma W., Wang X.: Quantum error-correcting codes from quasi-cyclic codes. Int. J. Quantum Inf. 6, 1263–1269 (2008).CrossRef
21.
Zurück zum Zitat Qian J., Ma W., Guo W.: Quantum codes from cyclic codes over finite rings. Int. J. Quantum Inf. 7, 1277–1283 (2009).CrossRef Qian J., Ma W., Guo W.: Quantum codes from cyclic codes over finite rings. Int. J. Quantum Inf. 7, 1277–1283 (2009).CrossRef
22.
Zurück zum Zitat Sari M., Siap I.: Quantum codes over a class of finite chain rings. Quantum Inf. Comput. 16(1–2), 0039–0049 (2016).MathSciNet Sari M., Siap I.: Quantum codes over a class of finite chain rings. Quantum Inf. Comput. 16(1–2), 0039–0049 (2016).MathSciNet
23.
Zurück zum Zitat Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52(4), 2493–2496 (1995).CrossRef Shor P.W.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A. 52(4), 2493–2496 (1995).CrossRef
24.
Zurück zum Zitat Singh A.K., Kewat P.K.: On cyclic codes over the ring \(\mathbb{Z}_p[u]/\langle u^k\rangle \). Des. Codes Cryptogr. 74, 1–13 (2015).MathSciNetCrossRef Singh A.K., Kewat P.K.: On cyclic codes over the ring \(\mathbb{Z}_p[u]/\langle u^k\rangle \). Des. Codes Cryptogr. 74, 1–13 (2015).MathSciNetCrossRef
25.
Zurück zum Zitat Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).MathSciNetCrossRef Steane A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996).MathSciNetCrossRef
27.
Zurück zum Zitat Tang Y., Zhu S., Kai X., Ding J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15(11), 4489–4500 (2016).MathSciNetCrossRef Tang Y., Zhu S., Kai X., Ding J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15(11), 4489–4500 (2016).MathSciNetCrossRef
Metadaten
Titel
Quantum codes from -cyclic codes
verfasst von
Soumak Biswas
Maheshanand Bhaintwal
Publikationsdatum
19.01.2022
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 2/2022
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00978-1

Weitere Artikel der Ausgabe 2/2022

Designs, Codes and Cryptography 2/2022 Zur Ausgabe