Skip to main content
Erschienen in: Quantum Information Processing 1/2019

01.01.2019

Quantum image edge extraction based on classical Sobel operator for NEQR

verfasst von: Ping Fan, Ri-Gui Zhou, Wenwen Hu, Naihuan Jing

Erschienen in: Quantum Information Processing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the basic problem in image processing and computer vision, the purpose of edge detection is to identify the point where the brightness of the digital image changes obviously. It is an indispensable task in digital image processing that image edge detection significantly reduces the amount of data and eliminates information that can be considered irrelevant, preserving the important structural properties of the image. However, because of the sharp increase in the image data in the actual applications, real-time problem has become a limitation in classical image processing. In this paper, quantum image edge extraction for the novel enhanced quantum representation (NEQR) is designed based on classical Sobel operator. The quantum image model of NEQR utilizes the inherent entanglement and superposition properties of quantum mechanics to store all the pixels of an image in a superposition state, which can realize parallel computation for calculating the gradients of the image intensity of all the pixels simultaneously. Through constructing and analyzing the quantum circuit of realization image edge extraction, we demonstrate that our proposed scheme can extract edges in the computational complexity of \(\mathrm{O}({n^2} + {2^{q + 4}})\) for a NEQR quantum image with a size of \({2^n} \times {2^n}\). Compared with all the classical edge extraction algorithms and some existing quantum edge extraction algorithms, our proposed scheme can reach a significant and exponential speedup. Hence, our proposed scheme would resolve the real-time problem of image edge extraction in practice image processing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
3.
Zurück zum Zitat Feynman, R.: Simulating physics with computers. Perseus Books 21(6), 467–488 (1999)MathSciNet Feynman, R.: Simulating physics with computers. Perseus Books 21(6), 467–488 (1999)MathSciNet
4.
Zurück zum Zitat Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. 400(1818), 97–117 (1985)CrossRefADSMathSciNetMATH Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. 400(1818), 97–117 (1985)CrossRefADSMathSciNetMATH
5.
Zurück zum Zitat Shor, P.: Quantum theory, Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994) Shor, P.: Quantum theory, Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)
6.
Zurück zum Zitat Grover, L.: Quantum theory, A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996) Grover, L.: Quantum theory, A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pp. 212–219 (1996)
7.
Zurück zum Zitat Iliyasu, A.M.: Quantum theory, towards the realisation of secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)CrossRefADSMathSciNetMATH Iliyasu, A.M.: Quantum theory, towards the realisation of secure and efficient image and video processing applications on quantum computers. Entropy 15, 2874–2974 (2013)CrossRefADSMathSciNetMATH
8.
Zurück zum Zitat Iliyasu, A.M., Le, P.Q., et al.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5(2), 85–101 (2013)CrossRef Iliyasu, A.M., Le, P.Q., et al.: A two-tier scheme for greyscale quantum image watermarking and recovery. Int. J. Innov. Comput. Appl. 5(2), 85–101 (2013)CrossRef
9.
Zurück zum Zitat ILugiato, L.A., Gatti, A., Brambilla, E.: Quantum imaging. J. Opt. B Quantum Semiclassical Opt. 4(3), 176–184 (2002)CrossRef ILugiato, L.A., Gatti, A., Brambilla, E.: Quantum imaging. J. Opt. B Quantum Semiclassical Opt. 4(3), 176–184 (2002)CrossRef
10.
Zurück zum Zitat Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. IEEE Signal Process. Mag. 19(6), 12–32 (2001)CrossRefADS Eldar, Y.C., Oppenheim, A.V.: Quantum signal processing. IEEE Signal Process. Mag. 19(6), 12–32 (2001)CrossRefADS
12.
Zurück zum Zitat Venegasandraca, S.E.: Storing, processing, and retrieving an image using quantum mechanics. Proc. SPIE Int. Soc. Opt. Eng. 5105(8), 1085–1090 (2003) Venegasandraca, S.E.: Storing, processing, and retrieving an image using quantum mechanics. Proc. SPIE Int. Soc. Opt. Eng. 5105(8), 1085–1090 (2003)
13.
Zurück zum Zitat Venegasandraca, S.E., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)CrossRefMathSciNet Venegasandraca, S.E., Ball, J.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)CrossRefMathSciNet
15.
Zurück zum Zitat Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)CrossRefMathSciNetMATH Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)CrossRefMathSciNetMATH
16.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)CrossRefADSMathSciNetMATH Zhang, Y., Lu, K., Gao, Y., et al.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)CrossRefADSMathSciNetMATH
17.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y., Gao, Y., et al.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)CrossRefADSMathSciNetMATH Zhang, Y., Lu, K., Gao, Y., Gao, Y., et al.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)CrossRefADSMathSciNetMATH
18.
Zurück zum Zitat Li, H.S., Zhu, Q., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)CrossRefADSMathSciNetMATH Li, H.S., Zhu, Q., Song, L., et al.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)CrossRefADSMathSciNetMATH
19.
Zurück zum Zitat Li, H.S., Zhu, Q., Zhou, R., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)CrossRefADSMathSciNetMATH Li, H.S., Zhu, Q., Zhou, R., et al.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13(4), 991–1011 (2014)CrossRefADSMathSciNetMATH
20.
Zurück zum Zitat Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)CrossRefADSMathSciNetMATH Yuan, S., Mao, X., Xue, Y., et al.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13(6), 1353–1379 (2014)CrossRefADSMathSciNetMATH
22.
Zurück zum Zitat Li, H., Fan, P., Xia, H., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. PP(99), 1–14 (2018)CrossRef Li, H., Fan, P., Xia, H., et al.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I Regul. Pap. PP(99), 1–14 (2018)CrossRef
23.
Zurück zum Zitat Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40(3), 113–123 (2011)MathSciNetMATH Le, P.Q., Iliyasu, A.M., Dong, F., et al.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40(3), 113–123 (2011)MathSciNetMATH
24.
Zurück zum Zitat Fan, P., Zhou, R., Jing, N., et al.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191–208 (2016)CrossRef Fan, P., Zhou, R., Jing, N., et al.: Geometric transformations of multidimensional color images based on NASS. Inf. Sci. 340, 191–208 (2016)CrossRef
26.
Zurück zum Zitat Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)CrossRefMathSciNetMATH Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1382–1398 (2017)CrossRefMathSciNetMATH
27.
28.
Zurück zum Zitat Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15(1), 37–64 (2016)CrossRefADSMathSciNetMATH Sang, J., Wang, S., Niu, X.: Quantum realization of the nearest-neighbor interpolation method for FRQI and NEQR. Quantum Inf. Process. 15(1), 37–64 (2016)CrossRefADSMathSciNetMATH
29.
Zurück zum Zitat Zhou, R.G., Hu, W., Fan, P., et al.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, 2511 (2017)CrossRefADS Zhou, R.G., Hu, W., Fan, P., et al.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7, 2511 (2017)CrossRefADS
30.
Zurück zum Zitat Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)CrossRefADSMathSciNetMATH Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)CrossRefADSMathSciNetMATH
31.
Zurück zum Zitat Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)CrossRefMATH Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)CrossRefMATH
32.
33.
Zurück zum Zitat Mogos, G.: Hiding data in a qimage file. Lect. Notes Eng. Comput. Sci. 2174(1), 448–452 (2009) Mogos, G.: Hiding data in a qimage file. Lect. Notes Eng. Comput. Sci. 2174(1), 448–452 (2009)
34.
Zurück zum Zitat Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)CrossRefMathSciNetMATH Iliyasu, A.M., Le, P.Q., Dong, F., et al.: Watermarking and authentication of quantum images based on restricted geometric transformations. Inf. Sci. 186(1), 126–149 (2012)CrossRefMathSciNetMATH
35.
Zurück zum Zitat Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2015)CrossRefADSMathSciNetMATH Zhang, W.W., Gao, F., Liu, B., et al.: A watermark strategy for quantum images based on quantum Fourier transform. Quantum Inf. Process. 12(2), 793–803 (2015)CrossRefADSMathSciNetMATH
36.
Zurück zum Zitat Song, X., Wang, S., El-Latif, A.A.A., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)CrossRef Song, X., Wang, S., El-Latif, A.A.A., et al.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimed. Syst. 20(4), 379–388 (2014)CrossRef
37.
Zurück zum Zitat Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)CrossRefADSMathSciNetMATH Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)CrossRefADSMathSciNetMATH
38.
Zurück zum Zitat Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRefMATH Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)CrossRefMATH
39.
Zurück zum Zitat Shahrokh, H., Mosayeb, N.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 1–14 (2016)MATH Shahrokh, H., Mosayeb, N.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 1–14 (2016)MATH
40.
Zurück zum Zitat Tseng, C., Hwang, T.: Quantum digital image processing algorithms. In: Proceedings of the 16th IPPR Conference on Computer Vision, Graphics and Image Processing pp. 827–834 (2003) Tseng, C., Hwang, T.: Quantum digital image processing algorithms. In: Proceedings of the 16th IPPR Conference on Computer Vision, Graphics and Image Processing pp. 827–834 (2003)
41.
Zurück zum Zitat Fu, X., Ding, M., Sun, Y., et al.: A new quantum edge detection algorithm for medical images. Proc. SPIE Int. Soc. Opt. Eng. 7497, 749724 (2009) Fu, X., Ding, M., Sun, Y., et al.: A new quantum edge detection algorithm for medical images. Proc. SPIE Int. Soc. Opt. Eng. 7497, 749724 (2009)
42.
Zurück zum Zitat Zhang, Y., Lu, K., Gao, Y.: Q Sobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(1), 1–13 (2015) Zhang, Y., Lu, K., Gao, Y.: Q Sobel: a novel quantum image edge extraction algorithm. Sci. China Inf. Sci. 58(1), 1–13 (2015)
43.
45.
Zurück zum Zitat Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Publishing House of Electronics Industry, Prentice Hall (2002) Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Publishing House of Electronics Industry, Prentice Hall (2002)
46.
Zurück zum Zitat Gao, W.: Technique of Multimedia Data Compression. Publishing House of Electronics Industry, Prentice Hall (1994) Gao, W.: Technique of Multimedia Data Compression. Publishing House of Electronics Industry, Prentice Hall (1994)
47.
Zurück zum Zitat Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biol. Med. 4(3), 315–328 (1971) Kirsch, R.A.: Computer determination of the constituent structure of biological images. Comput. Biol. Med. 4(3), 315–328 (1971)
48.
Zurück zum Zitat Canny, J.: A computational approach to edge detection. IEEE TPAMI. 8(6), 679–697 (1986)CrossRef Canny, J.: A computational approach to edge detection. IEEE TPAMI. 8(6), 679–697 (1986)CrossRef
49.
Zurück zum Zitat Islam, M.S., Rahman, M.M., Begum, Z., et al.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8(2), 208–213 (2009)CrossRef Islam, M.S., Rahman, M.M., Begum, Z., et al.: Low cost quantum realization of reversible multiplier circuit. Inf. Technol. J. 8(2), 208–213 (2009)CrossRef
50.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, Florida, pp. 229–234 (2009) Thapliyal, H., Ranganathan, N.: Design of efficient reversible binary subtractors based on a new reversible gate. In: Proceedings of the IEEE Computer Society Annual Symposium on VLSI, Tampa, Florida, pp. 229–234 (2009)
51.
Zurück zum Zitat Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. Nanotechnology 117, 1430–1435 (2011) Thapliyal, H., Ranganathan, N.: A new design of the reversible subtractor circuit. Nanotechnology 117, 1430–1435 (2011)
52.
Zurück zum Zitat Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52(5), 3457–3467 (1995)CrossRefADS Barenco, A., Bennett, C.H., Cleve, R., et al.: Elementary gates for quantum computation. Phys. Rev. A. 52(5), 3457–3467 (1995)CrossRefADS
Metadaten
Titel
Quantum image edge extraction based on classical Sobel operator for NEQR
verfasst von
Ping Fan
Ri-Gui Zhou
Wenwen Hu
Naihuan Jing
Publikationsdatum
01.01.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 1/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-2131-3

Weitere Artikel der Ausgabe 1/2019

Quantum Information Processing 1/2019 Zur Ausgabe

Neuer Inhalt