Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Quantum Key Distribution

verfasst von : Pramode K. Verma, Mayssaa El Rifai, Kam Wai Clifford Chan

Erschienen in: Multi-photon Quantum Secure Communication

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional implementations of cryptography are only computationally secure. The security of quantum cryptography (QC), on the other hand, is based on the inherent uncertainty in quantum phenomena at the physical layer of a communication system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography (2nd ed.). Boca Raton: CRC Press. Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography (2nd ed.). Boca Raton: CRC Press.
2.
Zurück zum Zitat Nielsen, M., & Chuang, I. (2011). Quantum computation and quantum information: 10th anniversary edition (10th Anniversary Edition). Cambridge: Cambridge University Press. Nielsen, M., & Chuang, I. (2011). Quantum computation and quantum information: 10th anniversary edition (10th Anniversary Edition). Cambridge: Cambridge University Press.
3.
Zurück zum Zitat Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, Vol. 175, 8pp. Bennett, C. H., & Brassard, G. (1984). Quantum cryptography: Public key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, Vol. 175, 8pp.
4.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Review of Modern Physics, 74, 145.CrossRef Gisin, N., Ribordy, G., Tittel, W., & Zbinden, H. (2002). Quantum cryptography. Review of Modern Physics, 74, 145.CrossRef
5.
Zurück zum Zitat Shor, P. W., & Preskill, J. (2000). Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters, 85, 441.CrossRef Shor, P. W., & Preskill, J. (2000). Simple proof of security of the BB84 quantum key distribution protocol. Physical Review Letters, 85, 441.CrossRef
6.
Zurück zum Zitat Gottesman, D., Lo, H. K., Lütkenhaus, N., & Preskill, J. (2004). Security of quantum key distribution with imperfect devices. Quantum Information and Computation, 4, 325.MathSciNetMATH Gottesman, D., Lo, H. K., Lütkenhaus, N., & Preskill, J. (2004). Security of quantum key distribution with imperfect devices. Quantum Information and Computation, 4, 325.MathSciNetMATH
7.
Zurück zum Zitat Bennett, C. H. (1992). Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 68, 3121.MathSciNetCrossRef Bennett, C. H. (1992). Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 68, 3121.MathSciNetCrossRef
8.
Zurück zum Zitat Eisaman, M. D., Fan, J., Migdall, A., & Polyakov, S. V. (2011). Invited review article: Single-photon sources and detectors. Review of Scientific Instruments, 82, 071101.CrossRef Eisaman, M. D., Fan, J., Migdall, A., & Polyakov, S. V. (2011). Invited review article: Single-photon sources and detectors. Review of Scientific Instruments, 82, 071101.CrossRef
9.
Zurück zum Zitat Buckley, S., Rivoire, K., & Vučković, J. (2012). Engineered quantum dot single-photon sources. Reports on Progress in Physics, 75, 126503.CrossRef Buckley, S., Rivoire, K., & Vučković, J. (2012). Engineered quantum dot single-photon sources. Reports on Progress in Physics, 75, 126503.CrossRef
10.
Zurück zum Zitat Takemoto1, K., Nambu, Y., Miyazawa, T., Sakuma, Y., Yamamoto1, T., Yorozu, S., & Arakawa, Y. (2015). Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Scientific Reports, 5, 14393. Takemoto1, K., Nambu, Y., Miyazawa, T., Sakuma, Y., Yamamoto1, T., Yorozu, S., & Arakawa, Y. (2015). Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors. Scientific Reports, 5, 14393.
11.
Zurück zum Zitat Brassard, G., Lütkenhaus, N., Mor, T., & Sanders, B. C. (2000). Limitations on practical quantum cryptography. Physical Review Letters, 85, 1330.CrossRef Brassard, G., Lütkenhaus, N., Mor, T., & Sanders, B. C. (2000). Limitations on practical quantum cryptography. Physical Review Letters, 85, 1330.CrossRef
12.
Zurück zum Zitat Grangier, P., Levenson, J. A., & Poizat, J. P. (1998). Quantum non-demolition measurements in optics. Nature, 396, 537.CrossRef Grangier, P., Levenson, J. A., & Poizat, J. P. (1998). Quantum non-demolition measurements in optics. Nature, 396, 537.CrossRef
13.
Zurück zum Zitat Johnson, B. R., Reed, M. D., Houck, A. A., Schuster, D. I., Bishop, Lev S., Ginossar, E., et al. (2010). Quantum non-demolition detection of single microwave photons in a circuit. Nature Physics, 6, 663.CrossRef Johnson, B. R., Reed, M. D., Houck, A. A., Schuster, D. I., Bishop, Lev S., Ginossar, E., et al. (2010). Quantum non-demolition detection of single microwave photons in a circuit. Nature Physics, 6, 663.CrossRef
14.
Zurück zum Zitat Lvovsky, A. I., Sanders, B. C., & Tittel, W. (2009). Optical quantum memory. Nature Photonics, 3, 706.CrossRef Lvovsky, A. I., Sanders, B. C., & Tittel, W. (2009). Optical quantum memory. Nature Photonics, 3, 706.CrossRef
15.
Zurück zum Zitat Vernaz-Gris, P., Huang, K., Cao, M., Sheremet, A. S., & Laurat, J. (2018). Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nature Communications, 9, 363.CrossRef Vernaz-Gris, P., Huang, K., Cao, M., Sheremet, A. S., & Laurat, J. (2018). Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble. Nature Communications, 9, 363.CrossRef
16.
Zurück zum Zitat Dušek, M., Jahma, M., & Lütkenhaus, N. (2000). Unambiguous state discrimination in quantum cryptography with weak coherent states. Physical Review A, 62, 022306.CrossRef Dušek, M., Jahma, M., & Lütkenhaus, N. (2000). Unambiguous state discrimination in quantum cryptography with weak coherent states. Physical Review A, 62, 022306.CrossRef
17.
Zurück zum Zitat Scarani, V., Acín, A., Ribordy, G., & Gisin, N. (2004). Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Physical Review Letters, 92, 057901.CrossRef Scarani, V., Acín, A., Ribordy, G., & Gisin, N. (2004). Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations. Physical Review Letters, 92, 057901.CrossRef
18.
Zurück zum Zitat Lo, H. K., Ma, X., & Chen, K. (2005). Decoy state quantum key distribution. Physical Review Letters, 94, 230504.CrossRef Lo, H. K., Ma, X., & Chen, K. (2005). Decoy state quantum key distribution. Physical Review Letters, 94, 230504.CrossRef
19.
Zurück zum Zitat Acín, A., Gisin, N., & Scarani, V. (2004). Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks. Physical Review A, 69, 012309.CrossRef Acín, A., Gisin, N., & Scarani, V. (2004). Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks. Physical Review A, 69, 012309.CrossRef
20.
Zurück zum Zitat Hwang, W. Y. (2003). Quantum key distribution with high loss: Toward global secure communication. Physical Review Letters, 91, 057901.CrossRef Hwang, W. Y. (2003). Quantum key distribution with high loss: Toward global secure communication. Physical Review Letters, 91, 057901.CrossRef
21.
Zurück zum Zitat Wang, X. B. (2005). Beating the photon-number-splitting attack in practical quantum cryptography. Physical Review Letters, 94, 230503.CrossRef Wang, X. B. (2005). Beating the photon-number-splitting attack in practical quantum cryptography. Physical Review Letters, 94, 230503.CrossRef
22.
Zurück zum Zitat Ma, X., Qi, B., Zhao, Y., & Lo, H. K. (2005). Practical decoy state for quantum key distribution. Physical Review A, 72, 012326.CrossRef Ma, X., Qi, B., Zhao, Y., & Lo, H. K. (2005). Practical decoy state for quantum key distribution. Physical Review A, 72, 012326.CrossRef
23.
24.
Zurück zum Zitat Stucki, D., Brunner, N., Gisin, N., Scarani, V., & Zbinden, H. (2005). Fast and simple one-way quantum key distribution. Applied Physics Letters, 87, 194108.CrossRef Stucki, D., Brunner, N., Gisin, N., Scarani, V., & Zbinden, H. (2005). Fast and simple one-way quantum key distribution. Applied Physics Letters, 87, 194108.CrossRef
25.
26.
Zurück zum Zitat Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777.CrossRef Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777.CrossRef
28.
Zurück zum Zitat Bell, J. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press. Bell, J. (1987). Speakable and unspeakable in quantum mechanics. Cambridge: Cambridge University Press.
29.
Zurück zum Zitat Clauser, J., Horne, M., Shimony, A., & Holt, R. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880.CrossRef Clauser, J., Horne, M., Shimony, A., & Holt, R. (1969). Proposed experiment to test local hidden-variable theories. Physical Review Letters, 23, 880.CrossRef
30.
Zurück zum Zitat Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W., & Shields, A. J. (2008). Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Optics Express, 16, 18790.CrossRef Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W., & Shields, A. J. (2008). Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate. Optics Express, 16, 18790.CrossRef
31.
Zurück zum Zitat Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W., & Shields, A. J. (2010). Continuous operation of high bit rate quantum key distribution. Applied Physics Letters, 96, 161102.CrossRef Dixon, A. R., Yuan, Z. L., Dynes, J. F., Sharpe, A. W., & Shields, A. J. (2010). Continuous operation of high bit rate quantum key distribution. Applied Physics Letters, 96, 161102.CrossRef
32.
Zurück zum Zitat Lo, H. K., Curty, M., & Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8, 595.CrossRef Lo, H. K., Curty, M., & Tamaki, K. (2014). Secure quantum key distribution. Nature Photonics, 8, 595.CrossRef
35.
Zurück zum Zitat Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., & Diamanti, E. (2013). Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7, 378.CrossRef Jouguet, P., Kunz-Jacques, S., Leverrier, A., Grangier, P., & Diamanti, E. (2013). Experimental demonstration of long-distance continuous-variable quantum key distribution. Nature Photonics, 7, 378.CrossRef
36.
Zurück zum Zitat Huang, J. Z., Weedbrook, C., Yin, Z. Q., Wang, S., Li, H. W., Chen, W., et al. (2013). Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Physical Review A, 87, 062329.CrossRef Huang, J. Z., Weedbrook, C., Yin, Z. Q., Wang, S., Li, H. W., Chen, W., et al. (2013). Quantum hacking of a continuous-variable quantum-key-distribution system using a wavelength attack. Physical Review A, 87, 062329.CrossRef
37.
Zurück zum Zitat Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell’s theorem. Physical Review Letters, 68, 557.MathSciNetCrossRef Bennett, C. H., Brassard, G., & Mermin, N. D. (1992). Quantum cryptography without Bell’s theorem. Physical Review Letters, 68, 557.MathSciNetCrossRef
38.
Zurück zum Zitat Mayers, D., & Yao, A. (1998). Quantum cryptography with imperfect apparatus. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto, 1998, p. 503. Washington, DC: IEEE. Mayers, D., & Yao, A. (1998). Quantum cryptography with imperfect apparatus. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science, Palo Alto, 1998, p. 503. Washington, DC: IEEE.
39.
Zurück zum Zitat Vazirani, U., & Vidick, T. (2014). Fully device-independent quantum key distribution. Physical Review Letters, 113, 140501.CrossRef Vazirani, U., & Vidick, T. (2014). Fully device-independent quantum key distribution. Physical Review Letters, 113, 140501.CrossRef
Metadaten
Titel
Quantum Key Distribution
verfasst von
Pramode K. Verma
Mayssaa El Rifai
Kam Wai Clifford Chan
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-8618-2_3