Skip to main content
Erschienen in: Quantum Information Processing 3/2018

01.03.2018

Quantum pattern recognition with multi-neuron interactions

verfasst von: E. Rezaei Fard, K. Aghayar, M. Amniat-Talab

Erschienen in: Quantum Information Processing | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (\(\eta \)) should equal the numbers of unknown bits in the input pattern (d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter \(\alpha \).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
This formula is obtained from permutation of pairwise interacted neuron in each model, for \(N>3\) and \(d>2\).
 
Literatur
1.
Zurück zum Zitat Yegnanarayana, B.: Artificial Neural Networks, pp. 77–87. PHI Learning Pvt. Ltd, New Delhi (2009) Yegnanarayana, B.: Artificial Neural Networks, pp. 77–87. PHI Learning Pvt. Ltd, New Delhi (2009)
2.
Zurück zum Zitat Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)ADSMathSciNetCrossRefMATH Hopfield, J.J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79(8), 2554–2558 (1982)ADSMathSciNetCrossRefMATH
3.
Zurück zum Zitat Hagan, M.T., Demuth, H.B., Beale, M.H., Jesus, O.D.: Neural Network Design, 2nd edn, Martin Hagan, chap. 21, p. 16 (2014) Hagan, M.T., Demuth, H.B., Beale, M.H., Jesus, O.D.: Neural Network Design, 2nd edn, Martin Hagan, chap. 21, p. 16 (2014)
4.
Zurück zum Zitat Bruck, J., Roychowdhury, V.P.: On the number of spurious memories in the Hopfield model (neural network). IEEE Trans. Inf. Theory 36(2), 393–397 (1990)CrossRefMATH Bruck, J., Roychowdhury, V.P.: On the number of spurious memories in the Hopfield model (neural network). IEEE Trans. Inf. Theory 36(2), 393–397 (1990)CrossRefMATH
5.
Zurück zum Zitat Hopfield, J.J., Feinstein, D.I., Palmer, R.G.: “Unlearning” has a stabilizing effect in collective memories. Nature 304, 158–159 (1983)ADSCrossRef Hopfield, J.J., Feinstein, D.I., Palmer, R.G.: “Unlearning” has a stabilizing effect in collective memories. Nature 304, 158–159 (1983)ADSCrossRef
6.
7.
Zurück zum Zitat Amit, D.J., Gutfreund, H., Sompolinsky, H.: Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55(14), 1530 (1985)ADSCrossRef Amit, D.J., Gutfreund, H., Sompolinsky, H.: Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55(14), 1530 (1985)ADSCrossRef
8.
Zurück zum Zitat Amit, D.J., Gutfreund, H., Sompolinsky, H.: Information storage in neural networks with low levels of activity. Phys. Rev. A 35(5), 2293 (1987)ADSMathSciNetCrossRef Amit, D.J., Gutfreund, H., Sompolinsky, H.: Information storage in neural networks with low levels of activity. Phys. Rev. A 35(5), 2293 (1987)ADSMathSciNetCrossRef
9.
Zurück zum Zitat Morita, M.: Associative memory with nonmonotone dynamics. Neural Netw. 6(1), 115–126 (1993)CrossRef Morita, M.: Associative memory with nonmonotone dynamics. Neural Netw. 6(1), 115–126 (1993)CrossRef
10.
Zurück zum Zitat Nishikawa, T., Lai, Y.C., Hoppensteadt, F.C.: Capacity of oscillatory associative-memory networks with error-free retrieval. Phys. Rev. Lett. 92(10), 108101 (2004)ADSCrossRef Nishikawa, T., Lai, Y.C., Hoppensteadt, F.C.: Capacity of oscillatory associative-memory networks with error-free retrieval. Phys. Rev. Lett. 92(10), 108101 (2004)ADSCrossRef
11.
Zurück zum Zitat Amari, S.I., Maginu, K.: Statistical neurodynamics of associative memory. Neural Netw. 1(1), 63–73 (1988)CrossRef Amari, S.I., Maginu, K.: Statistical neurodynamics of associative memory. Neural Netw. 1(1), 63–73 (1988)CrossRef
12.
Zurück zum Zitat Okada, M.: A hierarchy of macrodynamical equations for associative memory. Neural Netw. 8(6), 833–838 (1995)CrossRef Okada, M.: A hierarchy of macrodynamical equations for associative memory. Neural Netw. 8(6), 833–838 (1995)CrossRef
13.
Zurück zum Zitat Coolen, A.C.C., Sherrington, D.: Order-parameter flow in the fully connected Hopfield model near saturation. Phys. Rev. E 49(3), 1921 (1994)ADSCrossRef Coolen, A.C.C., Sherrington, D.: Order-parameter flow in the fully connected Hopfield model near saturation. Phys. Rev. E 49(3), 1921 (1994)ADSCrossRef
14.
Zurück zum Zitat Coolen, A.C.C., Laughton, S.N., Sherrington, D.: Dynamical replica theory for disordered spin systems. Phys. Rev. B 53(13), 8184 (1996)ADSCrossRef Coolen, A.C.C., Laughton, S.N., Sherrington, D.: Dynamical replica theory for disordered spin systems. Phys. Rev. B 53(13), 8184 (1996)ADSCrossRef
15.
Zurück zum Zitat Ma, Y.Q.: Statics in the random quantum asymmetric Sherrington–Kirkpatrick model. Phys. Rev. B 45(2), 793 (1992)ADSCrossRef Ma, Y.Q.: Statics in the random quantum asymmetric Sherrington–Kirkpatrick model. Phys. Rev. B 45(2), 793 (1992)ADSCrossRef
16.
Zurück zum Zitat Xi, Q., Ma, Y.Q.: Quantum Hopfield model with a random transverse field and a random neuronal threshold. Phys. Lett. A 254(6), 355–360 (1999). VancouverADSCrossRef Xi, Q., Ma, Y.Q.: Quantum Hopfield model with a random transverse field and a random neuronal threshold. Phys. Lett. A 254(6), 355–360 (1999). VancouverADSCrossRef
18.
Zurück zum Zitat Inoue, J.I.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys. Conf. Ser. 297(1), 012012 (2011)CrossRef Inoue, J.I.: Pattern-recalling processes in quantum Hopfield networks far from saturation. J. Phys. Conf. Ser. 297(1), 012012 (2011)CrossRef
19.
Zurück zum Zitat Suzuki, M.: Relationship between d-dimensional quantal spin systems and (\(d+1\))-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Progress of theoretical physics 56(5), 1454–1469 (1976)ADSMathSciNetCrossRefMATH Suzuki, M.: Relationship between d-dimensional quantal spin systems and (\(d+1\))-dimensional Ising systems: equivalence, critical exponents and systematic approximants of the partition function and spin correlations. Progress of theoretical physics 56(5), 1454–1469 (1976)ADSMathSciNetCrossRefMATH
20.
Zurück zum Zitat Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)ADSMathSciNetCrossRefMATH Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)ADSMathSciNetCrossRefMATH
21.
Zurück zum Zitat Santra, S., Quiroz, G., Ver Steeg, G., Lidar, D.A.: MAX 2-SAT with up to 108 qubits. New J. Phys. 16(4), 045006 (2014)ADSCrossRef Santra, S., Quiroz, G., Ver Steeg, G., Lidar, D.A.: MAX 2-SAT with up to 108 qubits. New J. Phys. 16(4), 045006 (2014)ADSCrossRef
22.
Zurück zum Zitat Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th Annual Symposium on the Foundations of Computer Science, 2004, Rome, Italy IEEE Computer Society Press, New York, p. 4251 (2004) Aharonov, D., Van Dam, W., Kempe, J., Landau, Z., Lloyd, S., Regev, O.: Adiabatic quantum computation is equivalent to standard quantum computation. In: Proceedings of the 45th Annual Symposium on the Foundations of Computer Science, 2004, Rome, Italy IEEE Computer Society Press, New York, p. 4251 (2004)
23.
Zurück zum Zitat Das, S., Kobes, R., Kunstatter, G.: Adiabatic quantum computation and Deutschs algorithm. Phys. Rev. A 65(6), 062310 (2002)ADSMathSciNetCrossRef Das, S., Kobes, R., Kunstatter, G.: Adiabatic quantum computation and Deutschs algorithm. Phys. Rev. A 65(6), 062310 (2002)ADSMathSciNetCrossRef
24.
25.
Zurück zum Zitat Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)ADSCrossRef Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65(4), 042308 (2002)ADSCrossRef
26.
Zurück zum Zitat Hen, I.: Period finding with adiabatic quantum computation. EPL Europhys. Lett. 105(5), 50005 (2014)ADSCrossRef Hen, I.: Period finding with adiabatic quantum computation. EPL Europhys. Lett. 105(5), 50005 (2014)ADSCrossRef
27.
Zurück zum Zitat Santra, S., Shehab, O., Balu, R.: Exponential capacity of associative memories under quantum annealing recall. arXiv preprint arXiv:1602.08149 (2016) Santra, S., Shehab, O., Balu, R.: Exponential capacity of associative memories under quantum annealing recall. arXiv preprint arXiv:​1602.​08149 (2016)
28.
Zurück zum Zitat Seddiqi, H., Humble, T.S.: Adiabatic quantum optimization for associative memory recall. arXiv preprint arXiv:1407.1904 (2014) Seddiqi, H., Humble, T.S.: Adiabatic quantum optimization for associative memory recall. arXiv preprint arXiv:​1407.​1904 (2014)
29.
Zurück zum Zitat Seki, Y., Nishimori, H.: Quantum annealing with antiferromagnetic transverse interactions for the Hopfield model. J. Phys. A Math. Theor. 48(33), 335301 (2015)MathSciNetCrossRefMATH Seki, Y., Nishimori, H.: Quantum annealing with antiferromagnetic transverse interactions for the Hopfield model. J. Phys. A Math. Theor. 48(33), 335301 (2015)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Neigovzen, R., Neves, J.L., Sollacher, R., Glaser, S.J.: Quantum pattern recognition with liquid-state nuclear magnetic resonance. Phys. Rev. A 79(4), 042321 (2009)ADSCrossRef Neigovzen, R., Neves, J.L., Sollacher, R., Glaser, S.J.: Quantum pattern recognition with liquid-state nuclear magnetic resonance. Phys. Rev. A 79(4), 042321 (2009)ADSCrossRef
31.
Zurück zum Zitat Fard, E.R., Aghayar, K.: Quantum adiabatic evolution for pattern recognition problem. Chin. Phys. Lett. 34(12), 120302 (2017)CrossRef Fard, E.R., Aghayar, K.: Quantum adiabatic evolution for pattern recognition problem. Chin. Phys. Lett. 34(12), 120302 (2017)CrossRef
32.
Zurück zum Zitat Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining, pp. 116–117. Academic Press, New York (2014)MATH Wittek, P.: Quantum Machine Learning: What Quantum Computing Means to Data Mining, pp. 116–117. Academic Press, New York (2014)MATH
34.
Zurück zum Zitat Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, London (2005) Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Psychology Press, London (2005)
35.
Zurück zum Zitat McEliece, R., Posner, E., Rodemich, E., Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theory 33(4), 461–482 (1987)MathSciNetCrossRefMATH McEliece, R., Posner, E., Rodemich, E., Venkatesh, S.: The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theory 33(4), 461–482 (1987)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Born, M., Fock, V.: Beweis des adiabatensatzes. Z. Phys. Hadrons Nucl. 51(3), 165–180 (1928)MATH Born, M., Fock, V.: Beweis des adiabatensatzes. Z. Phys. Hadrons Nucl. 51(3), 165–180 (1928)MATH
40.
Zurück zum Zitat Zhang, D.J., Yu, X.D., Tong, D.M.: Theorem on the existence of a nonzero energy gap in adiabatic quantum computation. Phys. Rev. A 90(4), 042321 (2014)ADSCrossRef Zhang, D.J., Yu, X.D., Tong, D.M.: Theorem on the existence of a nonzero energy gap in adiabatic quantum computation. Phys. Rev. A 90(4), 042321 (2014)ADSCrossRef
42.
Zurück zum Zitat McMahon, D.: Quantum Computing Explained, John Wiley & Sons, pp. 305–313 (2007) McMahon, D.: Quantum Computing Explained, John Wiley & Sons, pp. 305–313 (2007)
43.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2002) Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 1st edn. Cambridge University Press, Cambridge (2002)
44.
Zurück zum Zitat Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetCrossRefMATH Choi, V.: Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quantum Inf. Process. 10(3), 343–353 (2011)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Hen, I., Young, A.P.: Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E 84, 061152 (2011)ADSCrossRef Hen, I., Young, A.P.: Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E 84, 061152 (2011)ADSCrossRef
46.
Zurück zum Zitat Childs, A.M., Farhi, E., Preskill, J.: Robustness of adiabatic quantum computation. Phys. Rev. A 65(1), 012322 (2001)ADSCrossRef Childs, A.M., Farhi, E., Preskill, J.: Robustness of adiabatic quantum computation. Phys. Rev. A 65(1), 012322 (2001)ADSCrossRef
47.
Metadaten
Titel
Quantum pattern recognition with multi-neuron interactions
verfasst von
E. Rezaei Fard
K. Aghayar
M. Amniat-Talab
Publikationsdatum
01.03.2018
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 3/2018
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-018-1816-y

Weitere Artikel der Ausgabe 3/2018

Quantum Information Processing 3/2018 Zur Ausgabe

Neuer Inhalt