Skip to main content

2022 | OriginalPaper | Buchkapitel

4. Quantum Radar

verfasst von : Kadir Durak, Zeki Seskir, Bulat Rami

Erschienen in: Quantum Computing Environments

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Quantum radar is a promising technology that has been getting attraction in recent years, with possible applications in military and civilian fields. In this chapter, the historical background, developments during the last two decades, proposals that are mainly referred to as quantum radar, and their experimental implementation cases are presented. Throughout this chapter, we will use the term radar to cover both radar and lidar, since quantum “radar” is not a radar in the strict sense of the meaning. It is used as an umbrella term to cover multiple proposals, some of which are capable of only detection and not ranging, with different techniques applicable both in the optical and microwave regimes. Therefore, when the term “quantum radar” is invoked, it is used for multiple purposes that are wider than just a quantum version of the classical radar systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Query used for this search in the ISI database is: (“supersensitivity” AND “fock state”) OR (“heisenberg limit” AND “fock state”) OR (“heisenberg limit” AND “squeezed state”) OR (“supersensitivity” AND “squeezed state”) OR “gaussian state illumination” OR “quantum Illumination” OR “entanglement illumination” OR “quantum radar” OR (“NOON state” AND (“standard quantum limit” OR radar)) OR (“standard quantum limit” AND heisenberg AND measurement AND entanglement) as of August 30th 2020. Afterwards, 203 articles and proceedings were checked manually and 167 of them were found to be acceptable to include into the dataset.
 
2
For convenience, in these formulas natural units with ħ = 2 are accepted, as in Ref.[74].
 
Literatur
4.
Zurück zum Zitat Steinhardt, A., & McCrae, J. (2003). Radar in the quantum limit. In IEEE International Symposium on Phased Array Systems and Technology (pp. 31–34). Steinhardt, A., & McCrae, J. (2003). Radar in the quantum limit. In IEEE International Symposium on Phased Array Systems and Technology (pp. 31–34).
5.
Zurück zum Zitat Zaugg, T. (2004). Entangled-photon range finding system and method Zaugg, T. (2004). Entangled-photon range finding system and method
6.
Zurück zum Zitat Edward, H. (2005). Allen and Markos Karageorgis. In Radar systems and methods using entangled quantum particles. Edward, H. (2005). Allen and Markos Karageorgis. In Radar systems and methods using entangled quantum particles.
8.
Zurück zum Zitat Afek, I., Ambar, O., & Silberberg, Y. (2010). High-NOON states by mixing quantum and classical light. Science, 328(5980), 879–881.MathSciNetCrossRef Afek, I., Ambar, O., & Silberberg, Y. (2010). High-NOON states by mixing quantum and classical light. Science, 328(5980), 879–881.MathSciNetCrossRef
17.
Zurück zum Zitat Luong, D., et al. (2020). Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2041–2060.CrossRef Luong, D., et al. (2020). Receiver operating characteristics for a prototype quantum two-mode squeezing radar. IEEE Transactions on Aerospace and Electronic Systems, 56(3), 2041–2060.CrossRef
18.
Zurück zum Zitat Sorelli, G., et al. (2020). Detecting a target with quantum entanglement. eprint: arXiv:2005.07116. Sorelli, G., et al. (2020). Detecting a target with quantum entanglement. eprint: arXiv:2005.07116.
27.
Zurück zum Zitat Lloyd, S. (2008). Quantum illumination. eprint: arXiv:0803.2022. Lloyd, S. (2008). Quantum illumination. eprint: arXiv:0803.2022.
29.
Zurück zum Zitat Durak, K., Jam, N., & Dindar, C. (2019). Object tracking and identification by quantum radar. arXiv:1908.06850. Durak, K., Jam, N., & Dindar, C. (2019). Object tracking and identification by quantum radar. arXiv:1908.06850.
30.
Zurück zum Zitat Torromé, R. G., Bekhti-Winkel, N. B., & Knott, P. (2020). Quantum illumination with multiple entangled photons. arXiv:2008.09455. Torromé, R. G., Bekhti-Winkel, N. B., & Knott, P. (2020). Quantum illumination with multiple entangled photons. arXiv:2008.09455.
31.
Zurück zum Zitat Bell, J. S. (2004). On the Einstein Podolsky Rosen Paradox. In Speakable and unspeakable in quantum mechanics (pp. 14–21). Cambridge University Press. Bell, J. S. (2004). On the Einstein Podolsky Rosen Paradox. In Speakable and unspeakable in quantum mechanics (pp. 14–21). Cambridge University Press.
47.
Zurück zum Zitat Plenio, M. B., & Virmani, S. (2007). An introduction to entanglement measures. Quantum Information and Computation, 7(1), 1–51. ISSN: 1533–7146.MathSciNetCrossRef Plenio, M. B., & Virmani, S. (2007). An introduction to entanglement measures. Quantum Information and Computation, 7(1), 1–51. ISSN: 1533–7146.MathSciNetCrossRef
63.
Zurück zum Zitat Yuen, H. P. (1986). Amplification of quantum states and noiseless photon amplifiers. Physics Letters A, 113(8), 405–407.MathSciNetCrossRef Yuen, H. P. (1986). Amplification of quantum states and noiseless photon amplifiers. Physics Letters A, 113(8), 405–407.MathSciNetCrossRef
64.
Zurück zum Zitat Adnane, H., Teklu, B., & Paris, M. G. A. (2019). Quantum phase communication channels assisted by non-deterministic noiseless amplifiers. JOSA B, 36(11), 2938–2945.CrossRef Adnane, H., Teklu, B., & Paris, M. G. A. (2019). Quantum phase communication channels assisted by non-deterministic noiseless amplifiers. JOSA B, 36(11), 2938–2945.CrossRef
65.
Zurück zum Zitat Abram, I., & Levenson, J. A. (1994). Quantum noise in parametric amplification. In Nonlinear spectroscopy of solids (pp. 251–287). Springer. Abram, I., & Levenson, J. A. (1994). Quantum noise in parametric amplification. In Nonlinear spectroscopy of solids (pp. 251–287). Springer.
66.
Zurück zum Zitat Zavatta, A., Fiurášek, J., & Bellini, M. (2011). A high-fidelity noiseless amplifier for quantum light states. Nature Photonics, 5(1), 52–56.CrossRef Zavatta, A., Fiurášek, J., & Bellini, M. (2011). A high-fidelity noiseless amplifier for quantum light states. Nature Photonics, 5(1), 52–56.CrossRef
67.
Zurück zum Zitat He, H., et al. (2020). Non-classical semiconductor photon sources enhancing the performance of classical target detection systems. Journal of Lightwave Technology, 38, 4540–4547.CrossRef He, H., et al. (2020). Non-classical semiconductor photon sources enhancing the performance of classical target detection systems. Journal of Lightwave Technology, 38, 4540–4547.CrossRef
69.
Zurück zum Zitat Israel, Y., Rosen, S., & Silberberg, Y. (2014). Supersensitive polarization microscopy using NOON states of light. Physical Review Letters, 112(10), 103604.CrossRef Israel, Y., Rosen, S., & Silberberg, Y. (2014). Supersensitive polarization microscopy using NOON states of light. Physical Review Letters, 112(10), 103604.CrossRef
70.
Zurück zum Zitat Wang, W., et al. (2019). Heisenberg-limited single-mode quantum metrology in a superconducting circuit. Nature Communications, 10(1), 1–6.CrossRef Wang, W., et al. (2019). Heisenberg-limited single-mode quantum metrology in a superconducting circuit. Nature Communications, 10(1), 1–6.CrossRef
71.
Zurück zum Zitat Luo, C., et al. (2017). Heisenberg-limited Sagnac interferometer with multiparticle states. Physical Review A, 95(2), 023608.CrossRef Luo, C., et al. (2017). Heisenberg-limited Sagnac interferometer with multiparticle states. Physical Review A, 95(2), 023608.CrossRef
72.
Zurück zum Zitat Zhou, Z.-Y., et al. (2017). Superresolving phase measurement with short-wavelength noon states by quantum frequency up-conversion. Physical Review Applied, 7(6), 064025.CrossRef Zhou, Z.-Y., et al. (2017). Superresolving phase measurement with short-wavelength noon states by quantum frequency up-conversion. Physical Review Applied, 7(6), 064025.CrossRef
73.
Zurück zum Zitat Smith III, J. F. (2009). Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement. In Quantum information and computation VII (Vol. 7342). International Society for Optics and Photonics, 73420A. Smith III, J. F. (2009). Quantum entangled radar theory and a correction method for the effects of the atmosphere on entanglement. In Quantum information and computation VII (Vol. 7342). International Society for Optics and Photonics, 73420A.
80.
Zurück zum Zitat Shapiro, J. H. (2019). The quantum illumination story. eprint: arXiv:1910.12277. Shapiro, J. H. (2019). The quantum illumination story. eprint: arXiv:1910.12277.
82.
Zurück zum Zitat Torromé, R. G., Bekhti-Winkel, N. B., & Knott, P. (2020). Quantum illumination with multiple entangled photons. arXiv preprint arXiv:2008.09455. Torromé, R. G., Bekhti-Winkel, N. B., & Knott, P. (2020). Quantum illumination with multiple entangled photons. arXiv preprint arXiv:2008.09455.
84.
Zurück zum Zitat Gilbert, G., & Hamrick, M. (2000). Practical quantum cryptography: a comprehensive analysis (part one). eprint: arXiv:quant-ph/0009027. Gilbert, G., & Hamrick, M. (2000). Practical quantum cryptography: a comprehensive analysis (part one). eprint: arXiv:quant-ph/0009027.
85.
91.
Zurück zum Zitat Skolnik, M. (2002). Introduction to radar systems. McGraw-Hill Education. ISBN: 0072881380. Skolnik, M. (2002). Introduction to radar systems. McGraw-Hill Education. ISBN: 0072881380.
92.
Zurück zum Zitat Liu, K., et al. (2014). Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technology Letters, 26(11), 1146–1149.CrossRef Liu, K., et al. (2014). Analysis of quantum radar cross section and its influence on target detection performance. IEEE Photonics Technology Letters, 26(11), 1146–1149.CrossRef
93.
Zurück zum Zitat Fang, C., et al. (2018). The calculation and analysis of the bistatic quantum radar cross section for the typical 2-D plate. IEEE Photonics Journal, 10(2), 1–14.CrossRef Fang, C., et al. (2018). The calculation and analysis of the bistatic quantum radar cross section for the typical 2-D plate. IEEE Photonics Journal, 10(2), 1–14.CrossRef
94.
Zurück zum Zitat Chang, C. W. S., et al. (2018). Generating multimode entangled microwaves with a superconducting parametric cavity. Physical Review Applied, 10(4), 044019.CrossRef Chang, C. W. S., et al. (2018). Generating multimode entangled microwaves with a superconducting parametric cavity. Physical Review Applied, 10(4), 044019.CrossRef
95.
Zurück zum Zitat Messaoudi, N., et al. (2020). Quantum-enhanced noise radar. Bulletin of the American Physical Society, 65. Messaoudi, N., et al. (2020). Quantum-enhanced noise radar. Bulletin of the American Physical Society, 65.
96.
Zurück zum Zitat England, D. G., Balaji, B., & Sussman, B. J. (2019). Quantum-enhanced standoff detection using correlated photon pairs. Physical Review A, 99(2), 023828.CrossRef England, D. G., Balaji, B., & Sussman, B. J. (2019). Quantum-enhanced standoff detection using correlated photon pairs. Physical Review A, 99(2), 023828.CrossRef
Metadaten
Titel
Quantum Radar
verfasst von
Kadir Durak
Zeki Seskir
Bulat Rami
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-89746-8_4

Neuer Inhalt