Skip to main content
Erschienen in: Quantum Information Processing 10/2021

01.10.2021

Quantum tomography benchmarking

verfasst von: B. I. Bantysh, A. Yu. Chernyavskiy, Yu. I. Bogdanov

Erschienen in: Quantum Information Processing | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent advances in quantum computers and simulators are steadily leading us toward full-scale quantum computing devices. Due to the fact that debugging is necessary to create any computing device, quantum tomography (QT) is a critical milestone on this path. In practice, the choice between different QT methods faces the lack of comparison methodology. Modern research provides a wide range of QT methods, which differ in their application areas, as well as experimental and computational complexity. Testing such methods is also being made under different conditions, and various efficiency measures are being applied. Moreover, many methods have complex programming implementations; thus, comparison becomes extremely difficult. In this study, we have developed a general methodology for comparing quantum-state tomography methods. The methodology is based on an estimate of the resources needed to achieve the required accuracy. We have developed a software library (in MATLAB and Python) that makes it easy to analyze any QT method implementation through a series of numerical experiments. The conditions for such a simulation are set by the number of tests corresponding to real physical experiments. As a validation of the proposed methodology and software, we analyzed and compared a set of QT methods. The analysis revealed some method-specific features and provided estimates of the relative efficiency of the methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Some measurements protocols could consider only a part of the measurement events and do not form complete POVM measurements. In this case, assuming N to be the total number of observed events could result in \(\eta > 1\) according to Eq. (3).
 
Literatur
1.
Zurück zum Zitat Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505 (2019)ADSCrossRef Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574(7779), 505 (2019)ADSCrossRef
2.
Zurück zum Zitat Bernien, H., Schwartz, S., Keesling, A., Levine, H., Omran, A., Pichler, H., Choi, S., Zibrov, A.S., Endres, M., Greiner, M., et al.: Probing many-body dynamics on a 51-atom quantum simulator. Nature 551(7682), 579 (2017)ADSCrossRef Bernien, H., Schwartz, S., Keesling, A., Levine, H., Omran, A., Pichler, H., Choi, S., Zibrov, A.S., Endres, M., Greiner, M., et al.: Probing many-body dynamics on a 51-atom quantum simulator. Nature 551(7682), 579 (2017)ADSCrossRef
3.
Zurück zum Zitat Banaszek, K., Cramer, M., Gross, D.: Focus on quantum tomography. New J. Phys. (2013) Banaszek, K., Cramer, M., Gross, D.: Focus on quantum tomography. New J. Phys. (2013)
4.
Zurück zum Zitat Paris, M., Rehacek, J.: Quantum state estimation. In: Lecture Notes in Physics, p. 649. Springer, Heidelberg (2004) Paris, M., Rehacek, J.: Quantum state estimation. In: Lecture Notes in Physics, p. 649. Springer, Heidelberg (2004)
5.
Zurück zum Zitat D’Ariano, G., Paris, M., Sacchi, M.: Quantum tomography (2003) D’Ariano, G., Paris, M., Sacchi, M.: Quantum tomography (2003)
6.
Zurück zum Zitat Lvovsky, A., Raymer, M.: Continuous-variable optical quantum-state tomography (2009) Lvovsky, A., Raymer, M.: Continuous-variable optical quantum-state tomography (2009)
7.
Zurück zum Zitat Bogdanov, Yu.I., Gavrichenko, A.K., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A.: Statistical reconstruction of mixed states of polarization qubits (2011) Bogdanov, Yu.I., Gavrichenko, A.K., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A.: Statistical reconstruction of mixed states of polarization qubits (2011)
8.
Zurück zum Zitat Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik. S.P.: Experimental adaptive process tomography (2017) Pogorelov, I.A., Struchalin, G.I., Straupe, S.S., Radchenko, I.V., Kravtsov, K.S., Kulik. S.P.: Experimental adaptive process tomography (2017)
9.
Zurück zum Zitat Huszár, F., Houlsby, N.M.: Adaptive Bayesian quantum tomography (2012) Huszár, F., Houlsby, N.M.: Adaptive Bayesian quantum tomography (2012)
10.
Zurück zum Zitat Bagan, E., Ballester, M.A., Gill, R.D., Muñoz-Tapia, R., Romero-Isart, O.: Separable measurement estimation of density matrices and its fidelity gap with collective protocols. Phys. Rev. Lett. 97(13), 130501 (2006) Bagan, E., Ballester, M.A., Gill, R.D., Muñoz-Tapia, R., Romero-Isart, O.: Separable measurement estimation of density matrices and its fidelity gap with collective protocols. Phys. Rev. Lett. 97(13), 130501 (2006)
11.
12.
Zurück zum Zitat Smolin, J.A., Gambetta, J.M., Smith, G.: Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise. Phys. Rev. Lett. 108(7), 070502 (2012) Smolin, J.A., Gambetta, J.M., Smith, G.: Efficient method for computing the maximum-likelihood quantum state from measurements with additive gaussian noise. Phys. Rev. Lett. 108(7), 070502 (2012)
13.
Zurück zum Zitat De Burgh, M.D., Langford, N.K., Doherty, A.C., Gilchrist, A.: Choice of measurement sets in qubit tomography. Phys. Rev. A 78(5), 052122 (2008) De Burgh, M.D., Langford, N.K., Doherty, A.C., Gilchrist, A.: Choice of measurement sets in qubit tomography. Phys. Rev. A 78(5), 052122 (2008)
14.
Zurück zum Zitat Banaszek, K., D’ariano, G.M., Paris, M.G.A., Sacchi, M.F.: Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61(1), 010304 (1999) Banaszek, K., D’ariano, G.M., Paris, M.G.A., Sacchi, M.F.: Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61(1), 010304 (1999)
15.
Zurück zum Zitat Bolduc, E., Knee, G.C., Gauger, E.M., Leach, J.: Projected gradient descent algorithms for quantum state tomography. npj Quantum Inf. 3(1), 1 (2017)CrossRef Bolduc, E., Knee, G.C., Gauger, E.M., Leach, J.: Projected gradient descent algorithms for quantum state tomography. npj Quantum Inf. 3(1), 1 (2017)CrossRef
16.
Zurück zum Zitat Shang, J., Zhang, Z., Ng, H.K.: Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 95(6), 062336 (2017) Shang, J., Zhang, Z., Ng, H.K.: Superfast maximum-likelihood reconstruction for quantum tomography. Phys. Rev. A 95(6), 062336 (2017)
17.
Zurück zum Zitat Gill, R.D., Massar, S.: In state estimation for large ensembles. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 178–214. World Scientific (2005) Gill, R.D., Massar, S.: In state estimation for large ensembles. In: Asymptotic Theory of Quantum Statistical Inference: Selected Papers, pp. 178–214. World Scientific (2005)
18.
Zurück zum Zitat Bogdanov, Yu.I.: Unified statistical method for reconstructing quantum states by purification. J. Exp. Theor. Phys. 108(6), 928 (2009)ADSCrossRef Bogdanov, Yu.I.: Unified statistical method for reconstructing quantum states by purification. J. Exp. Theor. Phys. 108(6), 928 (2009)ADSCrossRef
19.
Zurück zum Zitat Bogdanov, Yu.I., Brida, G., Bukeev, I.D., Genovese, M., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A., Shurupov, A.P.: Statistical estimation of the quality of quantum-tomography protocols. Phys. Rev. A 84(4), 042108 (2011) Bogdanov, Yu.I., Brida, G., Bukeev, I.D., Genovese, M., Kravtsov, K.S., Kulik, S.P., Moreva, E.V., Soloviev, A.A., Shurupov, A.P.: Statistical estimation of the quality of quantum-tomography protocols. Phys. Rev. A 84(4), 042108 (2011)
20.
Zurück zum Zitat Bantysh, B.I., Chernyavskiy, AYu., Bogdanov, Yu.I.: Comparison of tomography methods for pure and almost pure quantum states. JETP Lett. 111(9), 512 (2020)ADSCrossRef Bantysh, B.I., Chernyavskiy, AYu., Bogdanov, Yu.I.: Comparison of tomography methods for pure and almost pure quantum states. JETP Lett. 111(9), 512 (2020)ADSCrossRef
21.
Zurück zum Zitat Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012) Flammia, S.T., Gross, D., Liu, Y.K., Eisert, J.: Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators. New J. Phys. 14(9), 095022 (2012)
22.
Zurück zum Zitat Struchalin, G.I., Kovlakov, E.V., Straupe, S.S., Kulik, S.P.: Adaptive quantum tomography of high-dimensional bipartite systems. Phys. Rev. A 98(3), 032330 (2018) Struchalin, G.I., Kovlakov, E.V., Straupe, S.S., Kulik, S.P.: Adaptive quantum tomography of high-dimensional bipartite systems. Phys. Rev. A 98(3), 032330 (2018)
24.
Zurück zum Zitat Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22, NIST (2001) Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Barker, E.: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22, NIST (2001)
25.
Zurück zum Zitat Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000) Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62(3), 032307 (2000)
27.
Zurück zum Zitat Liang, Y.C., Yeh, Y.H., Mendonça, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019) Liang, Y.C., Yeh, Y.H., Mendonça, P.E., Teh, R.Y., Reid, M.D., Drummond, P.D.: Quantum fidelity measures for mixed states. Rep. Prog. Phys. 82(7), 076001 (2019)
28.
Zurück zum Zitat Bogdanov, Yu.I., Brida, G., Genovese, M., Kulik, S.P., Moreva, E.V., Shurupov, A.P.: Statistical estimation of the efficiency of quantum state tomography protocols. Phys. Rev. Lett. 105(1), 010404 (2010) Bogdanov, Yu.I., Brida, G., Genovese, M., Kulik, S.P., Moreva, E.V., Shurupov, A.P.: Statistical estimation of the efficiency of quantum state tomography protocols. Phys. Rev. Lett. 105(1), 010404 (2010)
29.
Zurück zum Zitat Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 52(12), 5186 (2008)MathSciNetCrossRef Hubert, M., Vandervieren, E.: An adjusted boxplot for skewed distributions. Comput. Stat. Data Anal. 52(12), 5186 (2008)MathSciNetCrossRef
30.
Zurück zum Zitat Brys, G., Hubert, M., Struyf, A.: A comparison of some new measures of skewness. In: Developments in Robust Statistics, pp. 98–113. Physica, Heidelberg (2003) Brys, G., Hubert, M., Struyf, A.: A comparison of some new measures of skewness. In: Developments in Robust Statistics, pp. 98–113. Physica, Heidelberg (2003)
31.
Zurück zum Zitat Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)MATH
32.
Zurück zum Zitat Zyczkowski, K., Sommers, H.J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34(35), 7111 (2001)ADSMathSciNetCrossRef Zyczkowski, K., Sommers, H.J.: Induced measures in the space of mixed quantum states. J. Phys. A Math. Gen. 34(35), 7111 (2001)ADSMathSciNetCrossRef
33.
Zurück zum Zitat Struchalin, G.I., Pogorelov, I.A., Straupe, S.S., Kravtsov, K.S., Radchenko, I.V., Kulik, S.P.: Experimental adaptive quantum tomography of two-qubit states. Phys. Rev. A 93(1), 012103 (2016) Struchalin, G.I., Pogorelov, I.A., Straupe, S.S., Kravtsov, K.S., Radchenko, I.V., Kulik, S.P.: Experimental adaptive quantum tomography of two-qubit states. Phys. Rev. A 93(1), 012103 (2016)
34.
Zurück zum Zitat Palmieri, A.M., Kovlakov, E., Bianchi, F., Yudin, D., Straupe, S., Biamonte, J.D., Kulik, S.: Experimental neural network enhanced quantum tomography. npj Quantum Inf. 6(1), 1 (2020) Palmieri, A.M., Kovlakov, E., Bianchi, F., Yudin, D., Straupe, S., Biamonte, J.D., Kulik, S.: Experimental neural network enhanced quantum tomography. npj Quantum Inf. 6(1), 1 (2020)
35.
Zurück zum Zitat Dür, W., Hein, M., Cirac, J.I., Briegel, H.J.: Standard forms of noisy quantum operations via depolarization. Phys. Rev. A 72(5), 052326 (2005) Dür, W., Hein, M., Cirac, J.I., Briegel, H.J.: Standard forms of noisy quantum operations via depolarization. Phys. Rev. A 72(5), 052326 (2005)
36.
Zurück zum Zitat Watson, T.F., Philips, S.G.J., Kawakami, E., Ward, D.R., Scarlino, P., Veldhorst, M., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., et al.: A programmable two-qubit quantum processor in silicon. Nature 555(7698), 633 (2018) Watson, T.F., Philips, S.G.J., Kawakami, E., Ward, D.R., Scarlino, P., Veldhorst, M., Savage, D.E., Lagally, M.G., Friesen, M., Coppersmith, S.N., et al.: A programmable two-qubit quantum processor in silicon. Nature 555(7698), 633 (2018)
37.
Zurück zum Zitat Tosi, G., Mohiyaddin, F.A., Schmitt, V., Tenberg, S., Rahman, R., Klimeck, G., Morello, A.: Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8(1), 1 (2017)CrossRef Tosi, G., Mohiyaddin, F.A., Schmitt, V., Tenberg, S., Rahman, R., Klimeck, G., Morello, A.: Silicon quantum processor with robust long-distance qubit couplings. Nat. Commun. 8(1), 1 (2017)CrossRef
38.
Zurück zum Zitat Wu, Y., Wang, Y., Qin, X., Rong, X., Du, J.: A programmable two-qubit solid-state quantum processor under ambient conditions. npj Quantum Inf. 5(1), 1 (2019) Wu, Y., Wang, Y., Qin, X., Rong, X., Du, J.: A programmable two-qubit solid-state quantum processor under ambient conditions. npj Quantum Inf. 5(1), 1 (2019)
39.
Zurück zum Zitat Wright, K., Beck, K.M., Debnath, S., Amini, J.M., Nam, Y., Grzesiak, N., et al.: Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019)ADSCrossRef Wright, K., Beck, K.M., Debnath, S., Amini, J.M., Nam, Y., Grzesiak, N., et al.: Benchmarking an 11-qubit quantum computer. Nat. Commun. 10, 5464 (2019)ADSCrossRef
42.
Zurück zum Zitat Ahn, D., Teo, Y.S., Jeong, H., Bouchard, F., Hufnagel, F., Karimi, E., Koutnỳ, D., Řeháček, J., Hradil, Z., Leuchs, G., et al.: Adaptive compressive tomography with no a priori information. Physical Review Letters 122(10), 100404 (2019)ADSCrossRef Ahn, D., Teo, Y.S., Jeong, H., Bouchard, F., Hufnagel, F., Karimi, E., Koutnỳ, D., Řeháček, J., Hradil, Z., Leuchs, G., et al.: Adaptive compressive tomography with no a priori information. Physical Review Letters 122(10), 100404 (2019)ADSCrossRef
43.
Zurück zum Zitat Goyeneche, D., Cañas, G., Etcheverry, S., Gómez, E., Xavier, G., Lima, G., Delgado, A.: Five measurement bases determine pure quantum states on any dimension. Phys. Rev. Lett. 115(9), 090401 (2015) Goyeneche, D., Cañas, G., Etcheverry, S., Gómez, E., Xavier, G., Lima, G., Delgado, A.: Five measurement bases determine pure quantum states on any dimension. Phys. Rev. Lett. 115(9), 090401 (2015)
44.
Zurück zum Zitat Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447 (2018)CrossRef Torlai, G., Mazzola, G., Carrasquilla, J., Troyer, M., Melko, R., Carleo, G.: Neural-network quantum state tomography. Nat. Phys. 14(5), 447 (2018)CrossRef
45.
Zurück zum Zitat Fastovets, D.V., Bogdanov, Yu.I., Bantysh, B.I., Lukichev, V.F.: Machine learning methods in quantum computing theory 11022, 110222S (2019) Fastovets, D.V., Bogdanov, Yu.I., Bantysh, B.I., Lukichev, V.F.: Machine learning methods in quantum computing theory 11022, 110222S (2019)
46.
Zurück zum Zitat Bogdanov, Yu.I., Avosopyants, G.V., Belinskii, L.V., Katamadze, K.G., Kulik, S.P., Lukichev, V.F.: Statistical reconstruction of optical quantum states based on mutually complementary quadrature quantum measurements. JETP 123(2), 212 (2016)ADSCrossRef Bogdanov, Yu.I., Avosopyants, G.V., Belinskii, L.V., Katamadze, K.G., Kulik, S.P., Lukichev, V.F.: Statistical reconstruction of optical quantum states based on mutually complementary quadrature quantum measurements. JETP 123(2), 212 (2016)ADSCrossRef
47.
Zurück zum Zitat Bengtsson, I.: Three ways to look at mutually unbiased bases. In: AIP Conference Proceedings, vol. 889, pp. 40–51. AIP (2007) Bengtsson, I.: Three ways to look at mutually unbiased bases. In: AIP Conference Proceedings, vol. 889, pp. 40–51. AIP (2007)
48.
Zurück zum Zitat Adamson, R.B.A., Steinberg, A.M.: Improving quantum state estimation with mutually unbiased bases. Phys. Rev. Lett. 105(3), 030406 (2010) Adamson, R.B.A., Steinberg, A.M.: Improving quantum state estimation with mutually unbiased bases. Phys. Rev. Lett. 105(3), 030406 (2010)
49.
Zurück zum Zitat Chen, Y., Ye, X.: Projection onto a simplex (2011) Chen, Y., Ye, X.: Projection onto a simplex (2011)
51.
Zurück zum Zitat Kosut, R., Walmsley, I.A., Rabitz, H.: Optimal experiment design for quantum state and process tomography and Hamiltonian parameter estimation (2004) Kosut, R., Walmsley, I.A., Rabitz, H.: Optimal experiment design for quantum state and process tomography and Hamiltonian parameter estimation (2004)
53.
Zurück zum Zitat Nielsen, M., Chuang, I.: The Advanced Theory of Statistics, Vol. 2: Inference and Relationship. Charles Griffin & Company Ltd. (1961) Nielsen, M., Chuang, I.: The Advanced Theory of Statistics, Vol. 2: Inference and Relationship. Charles Griffin & Company Ltd. (1961)
56.
Zurück zum Zitat Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory. In: Proceedings of the 2004 American Control Conference, pp. 3273–3278. IEEE (2004) Fazel, M., Hindi, H., Boyd, S.: Rank minimization and applications in system theory. In: Proceedings of the 2004 American Control Conference, pp. 3273–3278. IEEE (2004)
57.
Zurück zum Zitat Steffens, A., Riofrío, C., McCutcheon, W., Roth, I., Bell, B.A., McMillan, A., Tame, M., Rarity, J., Eisert, J.: Experimentally exploring compressed sensing quantum tomography. Quantum Sci. Technol. 2(2), 025005 (2017) Steffens, A., Riofrío, C., McCutcheon, W., Roth, I., Bell, B.A., McMillan, A., Tame, M., Rarity, J., Eisert, J.: Experimentally exploring compressed sensing quantum tomography. Quantum Sci. Technol. 2(2), 025005 (2017)
58.
Zurück zum Zitat Ferrie, C.: Self-guided quantum tomography. Phys. Rev. Lett. 113(19), 190404 (2014) Ferrie, C.: Self-guided quantum tomography. Phys. Rev. Lett. 113(19), 190404 (2014)
59.
Zurück zum Zitat Chapman, R.J., Ferrie, C., Peruzzo, A.: Experimental demonstration of self-guided quantum tomography. Phys. Rev. Lett. 117(4), 040402 (2016) Chapman, R.J., Ferrie, C., Peruzzo, A.: Experimental demonstration of self-guided quantum tomography. Phys. Rev. Lett. 117(4), 040402 (2016)
61.
Zurück zum Zitat Knee, G.C., Bolduc, E., Leach, J., Gauger, E.M.: Quantum process tomography via completely positive and trace-preserving projection. Phys. Rev. A 98(6), 062336 (2018) Knee, G.C., Bolduc, E., Leach, J., Gauger, E.M.: Quantum process tomography via completely positive and trace-preserving projection. Phys. Rev. A 98(6), 062336 (2018)
62.
Zurück zum Zitat Bantysh, B.I., Fastovets, D.V., Bogdanov, Yu.I.: MATLAB library for the root approach quantum tomography 11022, 110222N (2019) Bantysh, B.I., Fastovets, D.V., Bogdanov, Yu.I.: MATLAB library for the root approach quantum tomography 11022, 110222N (2019)
63.
Zurück zum Zitat Huang, W., Yang, C.H., Chan, K.W., Tanttu, T., Hensen, B., Leon, R.C.C., Fogarty, M.A., Hwang, J.C.C., Hudson, F.E., Itoh, K.M., et al.: Fidelity benchmarks for two-qubit gates in silicon. Nature 569(7757), 532 (2019)ADSCrossRef Huang, W., Yang, C.H., Chan, K.W., Tanttu, T., Hensen, B., Leon, R.C.C., Fogarty, M.A., Hwang, J.C.C., Hudson, F.E., Itoh, K.M., et al.: Fidelity benchmarks for two-qubit gates in silicon. Nature 569(7757), 532 (2019)ADSCrossRef
Metadaten
Titel
Quantum tomography benchmarking
verfasst von
B. I. Bantysh
A. Yu. Chernyavskiy
Yu. I. Bogdanov
Publikationsdatum
01.10.2021
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2021
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-021-03285-9

Weitere Artikel der Ausgabe 10/2021

Quantum Information Processing 10/2021 Zur Ausgabe

Neuer Inhalt